Establishment and characterization of a bovine mammary epithelial cell line with unique properties. 1996

B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
Department of Animal and Food Sciences, University of Vermont, Burlington 05405, USA.

Clonal cell lines (BME-UV) were established from primary epithelial cells by stable transfection with a plasmid, carrying the sequence of the simian virus 40 early region mutant tsA58, encoding the thermolabile large T antigen. The BME-UV cells have undergone more than 300 population doublings and produce intranuclear large T antigen. At low confluency, growing islands of cells are apparent exhibiting the characteristic cobblestone morphology of epithelial cells. The BME-UV cells expressed functional markers such as microvilli and desmosomes and biochemical markers of mammary epithelial cells such as a repertoire of cytokeratins. The BME-UV cells are capable of synthesizing low levels of alpha-lactalbumin and alpha s1-casein (50 ng/ml of medium/24 h). One of the cell lines, BME-UV1 showed enhanced proliferation in the presence of epidermal growth factor (EGF) and insulinlike growth factor I (IGF-I). The BME-UV1 cell line is the only known bovine mammary epithelial cell line responsive to EGF. The BME-UV cells grown on collagen at low confluency are capable of developing very long projections that most likely allow for communication between cells at a distance from each other. The BME-UV cells may become a valid model system to examine bovine mammary epithelial proliferation and differentiation and cell-to-cell communication.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture

Related Publications

B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
July 1991, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
January 2000, In vitro cellular & developmental biology. Animal,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
December 2006, Cell biology international,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
January 2012, PloS one,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
January 2023, Journal of animal science,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
March 2012, In vitro cellular & developmental biology. Animal,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
May 2002, In vitro cellular & developmental biology. Animal,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
April 1998, In vitro cellular & developmental biology. Animal,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
October 2021, Journal of animal science,
B Zavizion, and M van Duffelen, and W Schaeffer, and I Politis
July 2014, Animal science journal = Nihon chikusan Gakkaiho,
Copied contents to your clipboard!