L-type Ca2+ channel and Na+/Ca2+ exchange inhibitors reduce Ca2+ accumulation in reperfused skeletal muscle. 1996

D G Welsh, and M I Lindinger
Department of Human Biology and Nutritional Sciences, University of Guelph, Ontario, Canada.

It is known that extracellular Ca2+ accumulates within skeletal muscle after prolonged periods of ischemia and reperfusion. In this study, we determined whether the L-type Ca2+ channel and the Na+/Ca2+ exchanger mediated Ca2+ influx and whether Ca2+ accumulation limited the metabolic and contractile recovery of reperfused skeletal muscle. Contracting rat hindlimbs (1-Hz twitch) exposed to 40 min of no-flow ischemia were reperfused with diltiazem (500 microM) or 3,4-dichlorobenzamil (300 microM) to block the Na+/Ca2+ exchanger and/or the L-type Ca2+ channel. High inhibitor concentrations were used to counter the binding of diltiazem and 3,4-dichlorobenzamil to albumin and red blood cells. Muscle Ca2+ accumulation, contractile function, and energy metabolism were assessed by measuring intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, twitch tension, and high-energy phosphagens [ATP, total adenine nucleotides (TAN) and phosphocreatine (PCr)]. Compared with control reperfusion, diltiazem and 3,4-dichlorobenzamil reduced Ca2+ influx and attenuated the rise in [Ca2+]i in the fast-oxidative glycolytic plantaris (Pl) and the fast-glycolytic white gastrocnemius (WG). The inhibitor-induced decrease in Ca2+ influx was 1.5- to 2-fold greater with 3,4-dichlorobenzamil than with diltiazem. Coinciding with the reduced Ca2+ accumulation, diltiazem and 3,4-dichlorobenzamil enhanced the resynthesis of ATP (Pl and WG), PCr (Pl and WG), and TAN (Pl) compared with control reperfusion. 3,4-Dichlorobenzamil also augmented twitch-tension recovery. We conclude that Ca2+ accumulation during reperfusion 1) arises from L-type Ca2+ channel and Na+/Ca2+ exchange activation; and 2) impairs the metabolic and contractile recovery of skeletal muscle.

UI MeSH Term Description Entries
D008297 Male Males
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017136 Ion Transport The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions. Antiport,Ion Cotransport,Ion Exchange, Intracellular,Symport,Uniport,Active Ion Transport,Facilitated Ion Transport,Passive Ion Transport,Cotransport, Ion,Exchange, Intracellular Ion,Intracellular Ion Exchange,Ion Transport, Active,Ion Transport, Facilitated,Ion Transport, Passive,Transport, Active Ion,Transport, Ion
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D G Welsh, and M I Lindinger
January 2011, Channels (Austin, Tex.),
D G Welsh, and M I Lindinger
August 1995, The Journal of physiology,
D G Welsh, and M I Lindinger
February 2008, Pflugers Archiv : European journal of physiology,
D G Welsh, and M I Lindinger
May 2001, The Journal of biological chemistry,
D G Welsh, and M I Lindinger
October 1999, Pflugers Archiv : European journal of physiology,
D G Welsh, and M I Lindinger
February 2004, The Journal of physiology,
D G Welsh, and M I Lindinger
December 2006, European journal of pharmacology,
D G Welsh, and M I Lindinger
January 2011, Frontiers in pharmacology,
D G Welsh, and M I Lindinger
May 2010, American journal of physiology. Heart and circulatory physiology,
D G Welsh, and M I Lindinger
August 1984, The American journal of physiology,
Copied contents to your clipboard!