Differential secretion of TNF-alpha and IFN-gamma by human peripheral blood-derived NK subsets and association with functional maturation. 1996

A Jewett, and X H Gan, and L T Lebow, and B Bonavida
Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA.

Natural killer cells can be separated into three major subsets (free, binder, and killer) based on their ability to bind and kill sensitive target cells. The nonbinder, nonkiller free cells are the most immature and can be activated to become binders and killers. Natural killer (NK) cells synthesize and secrete several cytokines that are intimately involved in NK activation. This study investigated the secretion of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) by purified NK cells and NK subsets following activation by various stimuli. K562 target cells stimulated secretion of both TNF-alpha and IFN-gamma by both the binder and the killer subsets but not by the free subset. IFN-alpha activated the secretion of IFN-gamma only, whereas IL-2 activated the secretion of both TNF-alpha and IFN-gamma by the binder and killer subsets and secretion was augmented by the addition of K562 to the cultures. Phorbol myristate acetate (PMA) and ionophore stimulated TNF-alpha and IFN-gamma secretion in both the binder and the killer subsets, though IFN-gamma secretion was more pronounced in the binder subset. Activation of TNF-alpha and IFN-gamma secretion was dependent on de novo protein synthesis. Analysis at the single-cell level demonstrated that the binder subset had the highest frequency of cells secreting IFN-gamma. These results demonstrate that both the binder and the killer subsets can be activated to secrete TNF-alpha and IFN-gamma, whereas the free NK subset secretes little or no TNF-alpha and IFN-gamma following activation. These data suggest that the ability of NK cells to secrete TNF-alpha and IFN-gamma following activation correlates with the functional stage of maturation of NK cells.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

A Jewett, and X H Gan, and L T Lebow, and B Bonavida
March 2007, American journal of reproductive immunology (New York, N.Y. : 1989),
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
March 2002, European journal of immunology,
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
May 2001, Journal of immunology (Baltimore, Md. : 1950),
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
April 2006, Cellular & molecular immunology,
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
May 2002, Yao xue xue bao = Acta pharmaceutica Sinica,
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
January 2015, Iranian journal of parasitology,
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
January 2015, Iranian journal of parasitology,
A Jewett, and X H Gan, and L T Lebow, and B Bonavida
October 1997, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Copied contents to your clipboard!