Synaptic loss in anterior horn neurons in lower motor neuron disease. 1996

S Sasaki, and M Iwata
Department of Neurology, Tokyo Women's Medical College, Japan.

This report concerns an ultrastructural investigation of the synapses of anterior horn neurons in the lumbar spinal cord of four patients with lower motor neuron disease (LMND) who had no upper motor neuron and corticospinal tract involvement. Anterior horn neurons of five normal individuals served as controls. The cell body area and the number of synapses of the normal-appearing neurons of the LMND patients were significantly reduced (P < 0.0001). These findings suggest that synaptic changes of anterior horn neurons could be ascribed to the degeneration of lower motor neurons rather than to the influence of upper motor neuron system degeneration. On the other hand, the lengths of individual synapses (P < 0.0001) and of their active zones (P < 0.05) were significantly increased in the patients. These increases would indicate that synapses on anterior horn neurons of individuals with LMND appear to have the capacity to react to progressive degeneration and loss of other synapses by means of a compensatory response or plasticity that enhances their efficiency.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D016472 Motor Neuron Disease Diseases characterized by a selective degeneration of the motor neurons of the spinal cord, brainstem, or motor cortex. Clinical subtypes are distinguished by the major site of degeneration. In AMYOTROPHIC LATERAL SCLEROSIS there is involvement of upper, lower, and brainstem motor neurons. In progressive muscular atrophy and related syndromes (see MUSCULAR ATROPHY, SPINAL) the motor neurons in the spinal cord are primarily affected. With progressive bulbar palsy (BULBAR PALSY, PROGRESSIVE), the initial degeneration occurs in the brainstem. In primary lateral sclerosis, the cortical neurons are affected in isolation. (Adams et al., Principles of Neurology, 6th ed, p1089) Anterior Horn Cell Disease,Familial Motor Neuron Disease,Lateral Sclerosis,Motor Neuron Disease, Lower,Motor Neuron Disease, Upper,Lower Motor Neuron Disease,Motor Neuron Disease, Familial,Motor Neuron Disease, Secondary,Motor System Disease,Primary Lateral Sclerosis,Secondary Motor Neuron Disease,Upper Motor Neuron Disease,Lateral Scleroses,Lateral Scleroses, Primary,Lateral Sclerosis, Primary,Motor Neuron Diseases,Motor System Diseases,Neuron Disease, Motor,Neuron Diseases, Motor,Primary Lateral Scleroses,Scleroses, Lateral,Scleroses, Primary Lateral,Sclerosis, Lateral,Sclerosis, Primary Lateral

Related Publications

S Sasaki, and M Iwata
July 1990, Journal of the neurological sciences,
S Sasaki, and M Iwata
March 1994, Journal of neuropathology and experimental neurology,
S Sasaki, and M Iwata
October 1986, Brain : a journal of neurology,
S Sasaki, and M Iwata
January 1982, Nihon rinsho. Japanese journal of clinical medicine,
S Sasaki, and M Iwata
September 1991, Journal of the neurological sciences,
S Sasaki, and M Iwata
July 1986, Journal of neuropathology and experimental neurology,
S Sasaki, and M Iwata
October 1969, Postgraduate medicine,
S Sasaki, and M Iwata
November 2017, Histology and histopathology,
Copied contents to your clipboard!