Hyperosmolality stimulates Na-K-ATPase gene expression in inner medullary collecting duct cells. 1996

A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
Department of Nephrology, Jichi Medical School, Tochigi, Japan.

Primary cultures of inner medullary collecting duct (IMCD) cells of rats were incubated in hyperosmotic media to determine the effects on Na-K-ATPase alpha 1- and beta 1-subunit mRNA expression. Osmolality of the incubation media was raised from 300 up to 500 mosmol/kgH2O by adding NaCl, mannitol, raffinose, or urea. Hyperosmotic media supplemented with NaCl, mannitol, or raffinose caused two- to fourfold increases in the alpha 1-subunit mRNA accumulation and five- to eightfold increases in the beta 1-subunit mRNA accumulation, with peak elevations of both subunits at 12 h after addition. In sharp contrast, hyperosmolar urea medium had no effect at any time. When NaCl or mannitol was added to the media in amounts ranging from 300 to 600 mosmol/kgH2O, the maximal effects on both alpha 1- and beta 1-subunit mRNA accumulation occurred at 500 mosmol/kgH2O. In urea-supplemented medium, however, there was no significant change at any level of osmolality. The upregulation of alpha 1- and beta 1-subunit mRNA induced by hyperosmotic mannitol- or raffinose-supplemented media was markedly inhibited by removal of Na from the culture medium. Furthermore, pretreatment with a protein synthesis inhibitor cycloheximide partially inhibited the upregulation of alpha 1- and beta 1-subunit mRNA in IMCD cells exposed to hyperosmotic media treated with NaCl or mannitol. When IMCD cells were incubated with hyperosmotic media (500 mosmol/kgH2O) supplemented with NaCl or mannitol for 24 h, Na-K-ATPase activity increased by 78.6 and 82.8%, respectively. In contrast, hyperosmolar urea medium had no significant effect on Na-K-ATPase activity. These results demonstrate that 1) hyperosmolality induced by the poorly permeating solutes (NaCl, mannitol, and raffinose) but not the rapidly permeating solute (urea) stimulates both alpha 1- and beta 1-subunit mRNA accumulations in IMCD cells in a time- and an osmolality-dependent manner, 2) the hyperosmolality-induced upregulation of alpha 1- and beta 1-subunit mRNA leads to an increase in Na- K -ATPase activity; and 3) the above upregulation of alpha1- and beta 1-subunit mRNA in response to hyperosmotic media requires, at least in part, the presence of Na in the extracellular medium and the de novo synthesis of intermediate proteins.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D011887 Raffinose A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Gossypose,Melitose,Melitriose
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular

Related Publications

A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
September 1989, The American journal of physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
December 1991, The American journal of physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
October 1994, The American journal of physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
June 1991, The American journal of physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
November 1993, The American journal of physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
January 2002, American journal of physiology. Renal physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
January 1994, Renal physiology and biochemistry,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
May 1996, The American journal of physiology,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
August 2005, Hypertension research : official journal of the Japanese Society of Hypertension,
A Ohtaka, and S Muto, and J Nemoto, and K Kawakami, and K Nagano, and Y Asano
August 1998, The Journal of membrane biology,
Copied contents to your clipboard!