Properties of sodium and potassium currents of cultured adult human atrial myocytes. 1996

J Feng, and G R Li, and B Fermini, and S Nattel
Department of Medicine, Montreal Heart Institute, Quebec, Canada.

Cultured cell systems are valuable for the study of regulation of phenotypic expression, but little is known about the electrophysiological properties of human cardiac tissues in culture. The present studies were designed to determine the feasibility of maintaining human atrial myocytes in primary culture and to assess changes in Na+ (INa) and K+ (Ito, transient outward, and Ikur, ultra-rapid delayed rectifier) currents. Within 24 h of culture, cells assumed an avoid shape, which they maintained for up to 7 days. The voltage dependence, kinetics, and density of INa were unchanged in culture. The activation properties of Ito (kinetics and voltage dependence) were not altered, but Ito density (current normalized to cell capacitance) was reduced and inactivation properties were altered (negative shift in voltage dependence and slowed kinetics) in cultured compared with fresh cells. The absolute current amplitude, kinetics, voltage dependence, and 4-aminopyridine sensitivity of IKur were unchanged, but current density was increased. All changes in ionic currents occurred within 24 h of culture and remained stable for the next 4 days. We conclude that human atrial myocytes can be maintained in primary culture, that the qualitative properties of INa, Ito, and IKur remain constant but that some quantitative changes occur, and that cultured human atrial myocytes may be valuable for studies of the molecular mechanisms and regulation of cardiac channel function in humans.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005240 Feasibility Studies Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project. Feasibility Study,Studies, Feasibility,Study, Feasibility
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J Feng, and G R Li, and B Fermini, and S Nattel
October 1996, The American journal of physiology,
J Feng, and G R Li, and B Fermini, and S Nattel
June 1994, Journal of biomedical science,
J Feng, and G R Li, and B Fermini, and S Nattel
February 2009, Toxicology,
J Feng, and G R Li, and B Fermini, and S Nattel
October 2002, Journal of cardiovascular pharmacology and therapeutics,
J Feng, and G R Li, and B Fermini, and S Nattel
May 2011, Clinical and experimental pharmacology & physiology,
J Feng, and G R Li, and B Fermini, and S Nattel
January 2011, International journal of biological sciences,
J Feng, and G R Li, and B Fermini, and S Nattel
November 1999, British journal of pharmacology,
J Feng, and G R Li, and B Fermini, and S Nattel
November 1997, Annals of the New York Academy of Sciences,
J Feng, and G R Li, and B Fermini, and S Nattel
September 2011, Pflugers Archiv : European journal of physiology,
J Feng, and G R Li, and B Fermini, and S Nattel
September 1992, The American surgeon,
Copied contents to your clipboard!