The effects of D-alpha-aminoadipic acid on long-term potentiation in the hippocampus of the rat in vitro. 1996

T P Hicks, and K I Ito
Department of Psychology, College of Arts and Sciences, The University of North Carolina, Greensboro 27412-5001, USA.

Many studies on long-term potentiation (LTP) in hippocampal region CA1 focus on receptor-mediated events that are often presumed to be linked to postsynaptic processes. Whereas it is now well-known that LTP consists of multiple components involving increases in postsynaptic responsiveness as well as enhanced presynaptic release of transmitter, little specific information has accrued on the nature of the presynaptic receptor-linked events. In the course of a series of experiments examining the actions of several antagonists of N-methyl-D-aspartate (NMDA) receptors on LTP, we made certain observations that suggested the role of a novel type of amino acid receptor which possibly was located presynaptically and that seemed to contribute to the induction of LTP. LTP evoked in region CA1 following high frequency stimulation (HFS) of the Schaffer collateral-commissural pathway measured 20-30 min after HFS always was attenuated incompletely when induced during administration of DalphaAA at doses ranging from 50 mu M to as high as 1000 mu M, whereas 2-amino-5-phosphonopropionate (AP5), at a concentration of 30 mu M, always abolished the process completely. 6,7-Dinitroquinoxaline-2,3-dione (DNQX) (10 mu M) administered alone also did not block LTP completely unless delivered in combination with DalphaAA. These non-AP5-like effects of DalphaAA could not be attributed to incomplete antagonism of postsynaptic NMDA receptors, since DalphaAA (200 mu M) completely and reversibly blocked the membrane depolarising effects of NMDA, as assessed through intracellular recording. Furthermore, the pharmacologically isolated NMDA-receptor-mediated component of the low-frequency, stimulus-evoked synaptic response was always abolished reversibly by DalphaAA (200 mu M). The most parsimonious explanation of these data is that a receptor which is only activated during HFS, is sensitive to the antagonising actions of AP5 and possibly also to DNQX but not to DalphaAA, and which could conceivably exist on terminals of the Schaffer collateral-commissural fibres, makes a significant contribution to LTP.

UI MeSH Term Description Entries
D008297 Male Males
D011810 Quinoxalines Quinoxaline
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015074 2-Aminoadipic Acid A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-METHYL-D-ASPARTATE; (NMDA). alpha-Aminoadipic Acid,2 Aminoadipic Acid,2-Aminohexanedioic Acid,2 Aminohexanedioic Acid,Acid, 2 Aminoadipic,Acid, 2-Aminoadipic,Acid, 2-Aminohexanedioic,Acid, alpha-Aminoadipic,Aminoadipic Acid, 2,alpha Aminoadipic Acid
D015763 2-Amino-5-phosphonovalerate The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. 2-Amino-5-phosphonopentanoic Acid,2-Amino-5-phosphonovaleric Acid,2-APV,2-Amino-5-phosphonopentanoate,5-Phosphononorvaline,d-APV,dl-APV,2 Amino 5 phosphonopentanoate,2 Amino 5 phosphonopentanoic Acid,2 Amino 5 phosphonovalerate,2 Amino 5 phosphonovaleric Acid,5 Phosphononorvaline
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

T P Hicks, and K I Ito
March 1999, Synapse (New York, N.Y.),
T P Hicks, and K I Ito
January 1996, Brain research bulletin,
T P Hicks, and K I Ito
June 1990, Brain research,
T P Hicks, and K I Ito
May 1990, Brain research. Developmental brain research,
T P Hicks, and K I Ito
September 1995, European journal of pharmacology,
Copied contents to your clipboard!