Purification and properties of thioltransferase from monkey small intestinal mucosa: its role in protein-S-thiolation. 1996

O Benard, and K A Balasubramanian
Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, India.

Modification of protein thiol by mixed disulfide formation with low molecular weight cellular thiols has been proposed as one of the post-translational modifications of amino acid side chains and is known to be catalyzed by thioltransferase. Intestinal mucosa is susceptible to oxidative injury and is likely to form protein mixed disulfide during oxidative stress. In the present study thioltransferase was purified from monkey small intestinal mucosa and its role in protein-s-thiolation was investigated. The purified enzyme was homogeneous, as judged by polyacrylamide gel electrophoresis under reducing conditions. The enzyme, with a molecular weight of 52 kDa, was a monomeric protein, which showed optimum activity at pH 8.0 with hydroxyethyl disulfide as substrate. The enzyme specifically cleaved the disulfide bond of the synthetic substrate, hydroxyethyl disulfide, in the presence of reduced glutathione (GSH) with the formation of oxidized glutathione (GSSG) as shown by high performance liquid chromatography. The enzyme also catalyzed protein thiolation of monkey intestinal mitochondria when incubated with glutathione disulfide. These studies have shown that thioltransferase purified from intestinal mucosa could catalyze dethiolation and thiolation.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011490 Protein Disulfide Reductase (Glutathione) An enzyme that catalyzes the reduction of a protein-disulfide in the presence of glutathione, forming a protein-dithiol. Insulin is one of its substrates. EC 1.8.4.2. Glutathione Insulin Transhydrogenase,Glutathione Protein Disulfide Oxidoreductase,Thiol-Disulfide Oxidoreductase,Thiol-Protein Disulfide Oxidoreductase,Disulfide Oxidoreductase, Thiol-Protein,Insulin Transhydrogenase, Glutathione,Oxidoreductase, Thiol-Disulfide,Oxidoreductase, Thiol-Protein Disulfide,Thiol Disulfide Oxidoreductase,Thiol Protein Disulfide Oxidoreductase,Transhydrogenase, Glutathione Insulin
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide

Related Publications

O Benard, and K A Balasubramanian
August 1983, Journal of biochemistry,
O Benard, and K A Balasubramanian
January 1986, The Journal of biological chemistry,
O Benard, and K A Balasubramanian
February 1981, The Journal of biological chemistry,
O Benard, and K A Balasubramanian
February 1990, Journal of biochemistry,
O Benard, and K A Balasubramanian
December 1966, Biochimica et biophysica acta,
O Benard, and K A Balasubramanian
March 1974, Indian journal of biochemistry & biophysics,
O Benard, and K A Balasubramanian
June 1969, Indian journal of biochemistry,
O Benard, and K A Balasubramanian
August 1998, Molecules and cells,
Copied contents to your clipboard!