IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. 1996

H Tsubokawa, and W N Ross
Department of Physiology, New York Medical College, Valhalla 10595, USA.

1. We studied the effects of synaptic inhibition on backpropagating Na+ spikes in the apical dendrites of CA1 pyramidal neurons in transverse slices from the rat hippocampus. Action potentials were evoked synaptically by stimulation in the stratum radiatum or antidromically by stimulation in the alveus. 2. Inhibitory postsynaptic potentials, evoked by stimulation in the stratum lacunosum moleculare, reduced the amplitude of single spikes in the distal dendrites but did not change the amplitudes in the somatic or proximal regions. Inhibition also reduced the spike-associated [Ca2+]i changes in the distal dendrites but had little effect on the changes in the proximal part of the cell. Both of these results are consistent with inhibition converting actively backpropagating spikes into passively spreading potentials at some point in the arbor. 3. In most cells, the spike amplitude reduction in the distal dendrites was blocked by bicuculline methiodide (10 microM) and inhibition was most effective when evoked in a time window < 10 ms preceding the action potential. This suggests that the amplitude reduction was due to a conductance shunt activated by gamma-aminobuturic acid-A (GABAA) receptors. Synaptically evoked GABAB responses were detected but usually did not block spike propagation. 4. Direct hyperpolarization in the distal dendrites was also effective in blocking antidromically evoked spike backpropagation but probably does not contribute when the action potentials are evoked synaptically. 5. This effect of inhibition is different from its usual function in synaptic integration because spike generation and propagation down the axon are not significantly affected. This kind of inhibition might be important in regulating transient [Ca2+]i changes in the dendrites including individual dendritic branches.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

H Tsubokawa, and W N Ross
July 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Tsubokawa, and W N Ross
March 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Tsubokawa, and W N Ross
December 2001, Journal of neurophysiology,
H Tsubokawa, and W N Ross
November 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!