Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. 1996

C R Olson, and S Y Musil, and M E Goldberg
Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, Maryland 20892, USA.

1. Posterior cingulate cortex, although widely regarded as a part of the limbic system, is connected most strongly to parietal and frontal areas with sensory, motor, and cognitive functions. To gain insight into the functional nature of posterior cingulate cortex, we have recorded from its neurons in monkeys performing oculomotor tasks known to activate parietal and frontal neurons. We have found that posterior cingulate neurons fire during periods of ocular fixation at a rate determined by the angle of gaze and by the size and direction of the preceding eye movement. 2. The activity of 530 posterior cingulate neurons was monitored while rhesus macaque monkeys made visually guided eye movements to spots projected on a tangent screen. 3. In 150/530 neurons, a statistically significant shift in the rate of discharge occurred around the time of onset of saccadic eye movements. The preponderant form of response was an increase in activity (142/150 neurons). 4. In 142 neurons exhibiting significant excitation after saccades in at least one direction, the level of discharge was analyzed as a function of time relative to onset of the saccade. Across the neuronal population as a whole, activity increased sharply at the moment of onset of the saccade, rising to a maximum after 200 ms and then declining slowly. The net level of discharge remained well above presaccadic baseline even after > 1 s of postsaccadic fixation. 5. In 63 neurons, the postsaccadic rate of discharge was analyzed relative to the angle of the eye in the orbit by monitoring neuronal activity while the monkey executed saccades of uniform direction and amplitude to four targets spaced at 16-deg intervals along a line. The postsaccadic firing level was significantly dependent on orbital angle in 44/63 neurons. 6. In 45 neurons, the postsaccadic rate of discharge was analyzed relative to saccade direction by monitoring neuronal activity while the monkey executed 16-deg saccades to a constant target from diametrically opposed starting points. The postsaccadic level of activity was significantly dependent on saccade direction in 20/ 45 neurons. 7. In 58 neurons, the postsaccadic rate of discharge was analyzed relative to saccade amplitude by monitoring neuronal activity while the monkey executed saccades, which varied in amplitude (4, 8, 16, and 32 deg) but which were constant in direction and brought the eye to bear on a constant endpoint. The postsaccadic level of activity was significantly dependent on saccade amplitude in 24/58 neurons. In all neurons exhibiting significant amplitude-dependence, stronger firing accompanied larger saccades. 8. The activity of 10 neurons was monitored during smooth pursuit eye movements (20 deg/s upward, downward, leftward, and rightward). The level of firing varied as a function of both the position of the eye (9 neurons) and the velocity of the eye (6 neurons). 9. We conclude that posterior cingulate neurons monitor eye movements and eye position. It is unlikely that they participate in the generation of eye movements because their shifts of discharge follow the onset of the movements. Eye-movement-related signals in posterior cingulate cortex may reflect the participation of this area in assigning spatial coordinates to retinal images.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D006179 Gyrus Cinguli One of the convolutions on the medial surface of the CEREBRAL HEMISPHERES. It surrounds the rostral part of the brain and CORPUS CALLOSUM and forms part of the LIMBIC SYSTEM. Anterior Cingulate Gyrus,Brodmann Area 23,Brodmann Area 24,Brodmann Area 26,Brodmann Area 29,Brodmann Area 30,Brodmann Area 31,Brodmann Area 32,Brodmann Area 33,Brodmann's Area 23,Brodmann's Area 24,Brodmann's Area 26,Brodmann's Area 29,Brodmann's Area 30,Brodmann's Area 31,Brodmann's Area 32,Brodmann's Area 33,Cingulate Gyrus,Gyrus Cinguli Anterior,Retrosplenial Complex,Retrosplenial Cortex,Anterior Cingulate,Anterior Cingulate Cortex,Cingular Gyrus,Cingulate Area,Cingulate Body,Cingulate Cortex,Cingulate Region,Gyrus, Cingulate,Posterior Cingulate,Posterior Cingulate Cortex,Posterior Cingulate Gyri,Posterior Cingulate Gyrus,Posterior Cingulate Region,Superior Mesial Regions,24, Brodmann Area,Anterior Cingulate Cortices,Anterior Cingulates,Anterior, Gyrus Cinguli,Anteriors, Gyrus Cinguli,Area 23, Brodmann,Area 23, Brodmann's,Area 24, Brodmann,Area 24, Brodmann's,Area 26, Brodmann,Area 26, Brodmann's,Area 29, Brodmann,Area 29, Brodmann's,Area 30, Brodmann,Area 30, Brodmann's,Area 31, Brodmann,Area 31, Brodmann's,Area 32, Brodmann,Area 32, Brodmann's,Area 33, Brodmann,Area 33, Brodmann's,Area, Cingulate,Body, Cingulate,Brodmanns Area 23,Brodmanns Area 24,Brodmanns Area 26,Brodmanns Area 29,Brodmanns Area 30,Brodmanns Area 31,Brodmanns Area 32,Brodmanns Area 33,Cingulate Areas,Cingulate Bodies,Cingulate Cortex, Anterior,Cingulate Cortex, Posterior,Cingulate Gyrus, Anterior,Cingulate Gyrus, Posterior,Cingulate Region, Posterior,Cingulate Regions,Cingulate, Anterior,Cingulate, Posterior,Cinguli Anterior, Gyrus,Cinguli Anteriors, Gyrus,Complex, Retrosplenial,Cortex, Anterior Cingulate,Cortex, Cingulate,Cortex, Posterior Cingulate,Cortex, Retrosplenial,Gyrus Cinguli Anteriors,Gyrus, Anterior Cingulate,Gyrus, Cingular,Gyrus, Posterior Cingulate,Posterior Cingulate Cortices,Posterior Cingulate Regions,Posterior Cingulates,Region, Cingulate,Region, Posterior Cingulate,Retrosplenial Complices,Retrosplenial Cortices,Superior Mesial Region
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C R Olson, and S Y Musil, and M E Goldberg
September 2005, Nature neuroscience,
C R Olson, and S Y Musil, and M E Goldberg
January 2010, Frontiers in human neuroscience,
C R Olson, and S Y Musil, and M E Goldberg
January 2011, Frontiers in neuroscience,
C R Olson, and S Y Musil, and M E Goldberg
December 2003, Neuron,
C R Olson, and S Y Musil, and M E Goldberg
April 2021, eLife,
C R Olson, and S Y Musil, and M E Goldberg
December 2009, Journal of neurophysiology,
C R Olson, and S Y Musil, and M E Goldberg
November 2004, Journal of neurophysiology,
C R Olson, and S Y Musil, and M E Goldberg
January 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C R Olson, and S Y Musil, and M E Goldberg
April 2009, Proceedings of the National Academy of Sciences of the United States of America,
C R Olson, and S Y Musil, and M E Goldberg
April 2000, Journal of neurophysiology,
Copied contents to your clipboard!