Cortical mechanisms underlying tactile discrimination in the monkey. I. Role of primary somatosensory cortex in passive texture discrimination. 1996

F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
Département de Physiologie and Ecole de Réadaptation, Faculté de Médecine, Université de Montréal, Quebec.

1. The discharge patterns of 359 single neurons in the hand representation of primary somatosensory cortex (SI) of two monkeys (Macaca mulatta) were recorded during the performance of a passive texture discrimination task with the contralateral hand (104 in area 3b, 149 in area 1, and 106 in area 2). Three nyloprint surfaces were mounted on a drum that was rotated under the digit tips. One surface was entirely smooth, whereas the other two were smooth over the first half and rough over the second half (smooth/ rough) (raised dots, 1 mm high and 1 mm diam, in a rectangular array; spatial period of 3 mm across the rows and columns for most recordings; 9 mm between columns for selected recordings). The monkeys were trained to distinguish between the smooth and smooth/rough surfaces. After the surface presentation, the monkey indicated the texture of the second half of the surface by pushing or pulling, respectively, on a lever with the other arm. For most recordings an average tangential speed of 49 mm/s was tested. For selected recordings motor speed was incremented (63, 75, or 89 mm/s). 2. Two hundred eighty-three neurons had a cutaneous receptive field (RF) on the hand (96 in area 3b, 120 in area 1, and 67 in area 2). Thirty-five neurons had a deep RF (4 in area 3b, 15 in area 1, and 16 in area 2). Seven neurons had mixed cutaneous and deep RFs (4 in area 1, 3 in area 2). Thirty-four neurons had no identifiable RF (4 in area 3b, 10 in area 1, and 20 in area 2). 3. The discharge of 185 of 359 neurons was significantly modulated during the presentation of one or both surfaces compared with the discharge at rest. Cells with a cutaneous RF that included part or all of the distal phalangeal pads of the digits used in the task (usually digits III and IV) were more likely to be modulated during surface presentation (132 of 179, 74%) than those with a cutaneous RF not in contact with the surfaces (24 of 104, 23%). The remaining neurons (mixed, deep, or no RF) were also infrequently modulated (29 of 76, 38%). 4. Of the 185 modulated units, 118 cells were classified as texture related because there was a significant difference in the discharge rate evoked by the smooth/rough and smooth surfaces. Cells with a cutaneous RF that included the digital pads in contact with the surfaces were frequently texture related (100 of 132, 76%). Texture sensitivity was less frequently observed in the remaining modulated neurons (18 of 53, 34%: cutaneous RF not in contact with the surfaces, deep RF, mixed cutaneous and deep RF, no identifiable RF). 5. Texture-related neurons were found in areas 3b, 1, and 2. Two patterns of texture-related responses were observed in the 100 cutaneous units with an RF in contact with the surfaces. Thirty-one units were classified as showing a phasic response at the time the digits encountered the leading edge of the rough half of the surface. Fifty-eight cells were classified as phasic-tonic (or sometimes tonic at the slowest motor speeds) because the response lasted for the duration of the presentation of the rough portion of the surface. The remaining 11 neurons could not be readily classified into one or the other category and, indeed, generally showed clear texture-related responses only at higher motor speeds (> 49 mm/s, 9 of 11). 6. Speed sensitivity was systematically evaluated in 41 of 100 texture-related units with a cutaneous RF in contact with the surfaces. The discharge of 66% of the units (27 of 41) varied significantly with the speed of surface presentation, with discharge increasing at higher speeds. Speed sensitivity was found in all three cytoarchitectonic areas (6 of 6 cells in area 3b, 11 of 22 in area 1, and 10 of 13 in area 2). 7. Contact force was also systematically monitored in these experiments (69 of 100 texture-related cells with a cutaneous RF in contact with the surfaces). Linear regression analyses indicated than 22% (15 of 69) of the texture-related units were sensitive to contact force (13

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D010465 Perception The process by which the nature and meaning of sensory stimuli are recognized and interpreted. Sensory Processing,Processing, Sensory
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013647 Task Performance and Analysis The detailed examination of observable activity or behavior associated with the execution or completion of a required function or unit of work. Critical Incident Technique,Critical Incident Technic,Task Performance,Task Performance, Analysis,Critical Incident Technics,Critical Incident Techniques,Incident Technic, Critical,Incident Technics, Critical,Incident Technique, Critical,Incident Techniques, Critical,Performance, Analysis Task,Performance, Task,Performances, Analysis Task,Performances, Task,Task Performances,Task Performances, Analysis,Technic, Critical Incident,Technics, Critical Incident,Technique, Critical Incident,Techniques, Critical Incident

Related Publications

F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
April 1988, Canadian journal of physiology and pharmacology,
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
September 2015, Journal of neurophysiology,
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
January 1992, Cerebral cortex (New York, N.Y. : 1991),
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
March 2014, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
April 2016, Journal of neurophysiology,
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
June 2004, Science (New York, N.Y.),
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
April 1999, The Journal of the Acoustical Society of America,
F Tremblay, and S A Ageranioti-Bélanger, and C E Chapman
February 2011, Neuron,
Copied contents to your clipboard!