Growth-associated protein (GAP-43) in terminal Schwann cells of rat Pacinian corpuscles. 1996

P Dubovy, and H Aldskogius
Department of Anatomy, School of Medicine, Brno, Czech Republic.

Growth-associated protein (GAP-43) immunoreactivity was examined in Pacinian corpuscles of intact neonatal and adult rats as well as after denervation and reinnervation in adult rats. All immature Pacinian corpuscles were GAP-43 immunoreactive (GAP-43+) in their inner cores while only 46 +/- 5.6% of the mature corpuscles exhibited GAP-43+ inner cores. The frequency of GAP-43+ inner cores increased to 90 +/- 7.2% after their permanent denervation. The expression of GAP-43 in the inner cores was reduced by contact with regrowing axons, but 38 +/- 5.3% of Pacinian corpuscles retained GAP-43+ in their inner cores following reinnervation. These results indicate that GAP-43 regulation is not confined only to axons but also involves some extra-axonal cues, and support a role for this protein in the process formation by terminal Schwann cells.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann

Related Publications

P Dubovy, and H Aldskogius
October 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Dubovy, and H Aldskogius
January 1992, Perspectives on developmental neurobiology,
P Dubovy, and H Aldskogius
April 2004, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
P Dubovy, and H Aldskogius
March 1994, Cell and tissue research,
P Dubovy, and H Aldskogius
November 1988, Proceedings of the National Academy of Sciences of the United States of America,
P Dubovy, and H Aldskogius
August 2012, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society,
P Dubovy, and H Aldskogius
May 1993, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!