Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. 1996

E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
Department de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, Spain.

The neostriatum is one of the areas with relatively high levels of glial cell line-derived neurotrophic factor (GDNF) messenger RNA expression in the developing and adult brain. GDNF expression in the neostriatum has been suggested to be involved in promoting the survival of nigral dopaminergic neurons, acting as a target-derived neurotrophic factor. However, GDNF messenger RNA expression in the striatum starts several days before dopaminergic and other afferent neurons reach the striatum, suggesting additional trophic effects of this factor on striatal neurons. In the present report, we have examined whether GDNF is able to prevent the degeneration of striatal calbindin- and parvalbumin-immunoreactive neurons in a lesion model of Huntington's disease. Fischer 344 rat 3T3 fibroblast cell line expressing high levels of GDNF (F3A-GDNF) was used to assess the protective effect of this factor, on striatal neurons, against excitotoxicity. Quinolinate (34 nmol) was injected at two different coordinates, and calbindin, parvalbumin and tyrosine hydroxylase immunoreactivity were examined seven days after lesion. Dopaminergic afferents were spared after quinolinate injection, but the number of calbindin- and parvalbumin-immunoreactive neurons was decreased. Interestingly, implantation of F3A-GDNF cells increased the density of tyrosine hydroxylase staining in the intact and also in the quinolinate-lesioned striatum. Furthermore, GDNF partially protected calbindin- but not parvalbumin-immunoreactive neurons from quinolinate excitotoxicity. Instead, mock-transfected fibroblasts did not affect any of these parameters. Our results show that GDNF specifically protects a subpopulation of striatal calbindin-immunoreactive neurons against quinolinate lesion, suggesting that GDNF administration may have a potential therapeutic application in the prevention and treatment of striatonigral degenerative disorders.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3
D017072 Neostriatum The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.

Related Publications

E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
July 1999, Neurochemistry international,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
August 2010, Journal of neuroimmunology,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
July 1999, Neuroscience letters,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
November 1997, Journal of neurobiology,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
November 1996, Cell and tissue research,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
November 2007, Journal of neurochemistry,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
March 2005, Brain research. Molecular brain research,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
June 2006, Proceedings of the National Academy of Sciences of the United States of America,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
January 2018, Developmental neuroscience,
E Pérez-Navarro, and E Arenas, and J Reiriz, and N Calvo, and J Alberch
May 2001, Experimental neurology,
Copied contents to your clipboard!