Antisense oligodeoxynucleotide to a delta-opioid receptor messenger RNA selectively blocks the antinociception induced by intracerebroventricularly administered delta-, but not mu-, epsilon- or kappa-opioid receptor agonists in the mouse. 1996

H Q Wang, and J P Kampine, and L F Tseng
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226, USA.

An antisense oligodeoxynucleotide to delta-opioid receptor messenger RNA was utilized to block the expression of mouse delta-opioid receptors for antinociception. The antinociception was measured by the tail-flick test in male ICR mice. Pretreatment with delta-antisense oligodeoxynucleotide (163 pmol) given intracerebroventricularly twice a day for one to four days produced a time-dependent inhibition of the tail-flick response induced by intracerebroventricularly administered (D-Ala2)deltorphin II (12.8 nmol). The (D-Ala2)deltorphin II-induced antinociception was significantly attenuated after three to four days of the delta-antisense oligodeoxynucleotide treatment, remained attenuated for two days and gradually recovered to the control level in four to 10 days after cessation of the pretreatment with delta-antisense oligodeoxynucleotide. Pretreatment with delta-antisense oligodeoxynucleotide (163 pmol) twice a day for four days markedly attenuated the antinociception induced by intracerebroventricularly administered (D-Ala2)deltorphin II and, to a lesser extent, by D-Pen2-D-Pen5-enkephalin and morphine, but not by (D-Ala2-MePhe4-Gly(ol)5)enkephalin, beta-endorphin or U50,488H. Mismatched oligodeoxynucleotide (163 pmol) was ineffective against the antinociception induced by these opioids. Our results provide the evidence that the cloned delta-opioid receptor is related to the pharmacologically classified delta 2-opioid receptor, and the antinociception induced by (D-Ala2)deltorphin II and, at least in part, by D-Pen2-D-Pen5-enkephalin and morphine given intracerebroventricularly is mediated by the stimulation of delta 2-opioid receptors. However, delta 2-opioid receptors are not involved in the antinociception induced by beta-endorphin, (D-Ala2-MePhe4-Gly(ol)5)enkephalin or U50,488H given intracerebroventricularly.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D010147 Pain Measurement Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies. Analgesia Tests,Analogue Pain Scale,Formalin Test,McGill Pain Questionnaire,Nociception Tests,Pain Assessment,Pain Intensity,Pain Severity,Tourniquet Pain Test,Visual Analogue Pain Scale,Analog Pain Scale,Assessment, Pain,McGill Pain Scale,Visual Analog Pain Scale,Analgesia Test,Analog Pain Scales,Analogue Pain Scales,Formalin Tests,Intensity, Pain,Measurement, Pain,Nociception Test,Pain Assessments,Pain Intensities,Pain Measurements,Pain Questionnaire, McGill,Pain Scale, Analog,Pain Scale, Analogue,Pain Scale, McGill,Pain Severities,Pain Test, Tourniquet,Questionnaire, McGill Pain,Scale, Analog Pain,Scale, Analogue Pain,Scale, McGill Pain,Severity, Pain,Test, Analgesia,Test, Formalin,Test, Nociception,Test, Tourniquet Pain,Tests, Nociception,Tourniquet Pain Tests
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors

Related Publications

H Q Wang, and J P Kampine, and L F Tseng
September 2002, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!