Construction of GFP vectors for use in gram-negative bacteria other than Escherichia coli. 1996

A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.

A set of vectors containing a mutated gfp gene was constructed for use with Gram-negative bacteria other than Escherichia coli. These constructs were: pTn3gfp for making random promoter probe gfp insertions into cloned DNA in E. coli for subsequent introduction into host strains; pUTmini-Tn5gfp for making random promoter probe gfp insertions directly into host strains; p519gfp and p519nfp, broad host range mob+ plasmids containing gfp expressed from a lac and an npt2 promoter, respectively.

UI MeSH Term Description Entries
D008164 Luminescent Proteins Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors. Bioluminescent Protein,Bioluminescent Proteins,Luminescent Protein,Photoprotein,Photoproteins,Protein, Bioluminescent,Protein, Luminescent,Proteins, Bioluminescent,Proteins, Luminescent
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
February 1998, BioTechniques,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
December 1998, FEMS microbiology letters,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
January 1988, Biotechnology (Reading, Mass.),
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
September 1991, Journal of bacteriology,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
November 1995, Plasmid,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
October 1996, Current opinion in biotechnology,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
August 2001, Microbiology (Reading, England),
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
July 1987, Infection and immunity,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
February 2001, Microbial ecology,
A G Matthysse, and S Stretton, and C Dandie, and N C McClure, and A E Goodman
April 1986, Journal of bacteriology,
Copied contents to your clipboard!