Allele-specific hybridization of lipoprotein lipase and factor-V Leiden missense mutations with direct label alkaline phosphatase-conjugated oligonucleotide probes. 1996

C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
Maine Medical Center Research Institute, South Portland 04106, USA.

Direct label alkaline phosphatase (AP) conjugated oligonucleotide probes (AP-DNA) were prepared to assess their utility for allele-specific detection of single base substitutions. Oligonucleotide conjugates were designed to detect point mutations in the genes for lipoprotein lipase (LPL) and coagulation factor-V (FV). Genomic DNA samples, including ones known to harbor point mutations in the genes for LPL and FV, were prepared from whole blood and subjected to polymerase chain reaction (PCR). PCR products were analyzed by Southern hybridization with the allele-specific AP-DNA probes and restriction endonuclease analysis. Thermal profiles for hybridization indicate optimal allele-specific selectivity was achieved with temperatures ranging from 45 degrees C to 55 degrees C at a total Na divided by concentration of 150 mM. Under these conditions the base changes studied were easily discriminated with allele specific hybridization signals in excess of 200:1 as estimated by scanning densitometry. Complete concordance was observed between hybridization and restriction analyses for 175 LPL and 201 FV clinical and reference samples. The total time for analysis of the PCR products was less than 2 h with a dot blot hybridization protocol.

UI MeSH Term Description Entries
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D005165 Factor V Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease. Coagulation Factor V,Proaccelerin,AC Globulin,Blood Coagulation Factor V,Factor 5,Factor Five,Factor Pi,Factor V, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations

Related Publications

C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
December 1997, Diagnostic molecular pathology : the American journal of surgical pathology, part B,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
October 1997, Thrombosis and haemostasis,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
August 1987, Journal of clinical microbiology,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
April 1992, Pharmacogenetics,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
May 1991, Genetic analysis, techniques and applications,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
November 1999, Clinical chemistry,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
January 1995, Applied and theoretical electrophoresis : the official journal of the International Electrophoresis Society,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
September 1994, BioTechniques,
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
January 1998, Methods in molecular biology (Clifton, N.J.),
C P Vary, and M Carmody, and R LeBlanc, and T Hayes, and C Rundell, and L Keilson
December 1989, Molecular and cellular probes,
Copied contents to your clipboard!