A nicked form of kinetoplast DNA in Leishmania tarentolae. 1977

P T Englund, and D C DiMaio, and S S Price

The mitochondrial DNA of the protozoan Leishmania tarentolae, known as kinetoplast DNA, contains thousands of minicircles linked in a two-dimensional network. When kinetoplast DNA from exponentially growing cells is centrifuged to equilibrium in a CsCl/ethidium bromide gradient, it is resolved into two discrete components, Form I and Form II. Nearly all of the minicircles in Form I networks are covalently closed and all of those in Form II networks are open. These forms are indistinguishable from each other when examined by electron microscopy and they appear identical when analyzed by gel electrophoresis after digestion with the restriction enzymes Hae III or Hpa II. However, Form II networks sediment roughly 50% faster than Form I networks on a neutral sucrose gradient, indicating that Form II networks are larger in size or more compact in conformation, or both. Analysis of denatured Form II DNA by sedimentation or electron microscopy indicates that nearly all of its minicircles have one or more interruptions in both strands. Since the majority of the Form II minicircles can be closed by DNA ligase, most of these interruptions must be nicks. Experiments with S1 nuclease indicate that some small gaps may also exist in Form II minicircles. 5'-Terminal nucleotide analysis of Form II kinetoplast DNA does not suggest that the interruptions are at specific locations in the minicircles. The significance of the two forms of kinetoplast DNA has not yet been determined, but it is possible that Form II is an intermediate in replication of this DNA.

UI MeSH Term Description Entries
D007891 Leishmania A genus of flagellate protozoa comprising several species that are pathogenic for humans. Organisms of this genus have an amastigote and a promastigote stage in their life cycles. As a result of enzymatic studies this single genus has been divided into two subgenera: Leishmania leishmania and Leishmania viannia. Species within the Leishmania leishmania subgenus include: L. aethiopica, L. arabica, L. donovani, L. enrietti, L. gerbilli, L. hertigi, L. infantum, L. major, L. mexicana, and L. tropica. The following species are those that compose the Leishmania viannia subgenus: L. braziliensis, L. guyanensis, L. lainsoni, L. naiffi, and L. shawi. Leishmania (Leishmania),Leishmania (Viannia),Leishmania leishmania,Leishmania viannia,Leishmania leishmanias,Leishmania viannias,Leishmanias,Leishmanias (Leishmania),Leishmanias (Viannia),leishmanias, Leishmania,viannias, Leishmania
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011118 Polynucleotide Ligases Catalyze the joining of preformed ribonucleotides or deoxyribonucleotides in phosphodiester linkage during genetic processes. EC 6.5.1. Polynucleotide Synthetases,Ligases, Polynucleotide,Synthetases, Polynucleotide
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA

Related Publications

P T Englund, and D C DiMaio, and S S Price
May 1974, The Journal of protozoology,
P T Englund, and D C DiMaio, and S S Price
April 1980, Journal of molecular biology,
P T Englund, and D C DiMaio, and S S Price
September 1973, Biochimica et biophysica acta,
P T Englund, and D C DiMaio, and S S Price
May 1978, Cell,
P T Englund, and D C DiMaio, and S S Price
October 1982, Molecular and biochemical parasitology,
P T Englund, and D C DiMaio, and S S Price
March 1971, Journal of molecular biology,
P T Englund, and D C DiMaio, and S S Price
September 1973, Biochimica et biophysica acta,
P T Englund, and D C DiMaio, and S S Price
November 1984, Molecular and biochemical parasitology,
P T Englund, and D C DiMaio, and S S Price
May 1974, Biochimica et biophysica acta,
P T Englund, and D C DiMaio, and S S Price
September 1973, Biochimica et biophysica acta,
Copied contents to your clipboard!