| D010599 |
Pharmacokinetics |
Dynamic and kinetic mechanisms of exogenous chemical DRUG LIBERATION; ABSORPTION; BIOLOGICAL TRANSPORT; TISSUE DISTRIBUTION; BIOTRANSFORMATION; elimination; and DRUG TOXICITY as a function of dosage, and rate of METABOLISM. LADMER, ADME and ADMET are abbreviations for liberation, absorption, distribution, metabolism, elimination, and toxicology. |
ADME,ADME-Tox,ADMET,Absorption, Distribution, Metabolism, Elimination, and Toxicology,Absorption, Distribution, Metabolism, and Elimination,Drug Kinetics,Kinetics, Drug,LADMER,Liberation, Absorption, Distribution, Metabolism, Elimination, and Response |
|
| D004364 |
Pharmaceutical Preparations |
Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. |
Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001711 |
Biotransformation |
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II. |
|
|
| D019265 |
Spectroscopy, Near-Infrared |
A noninvasive technique that uses the differential absorption properties of hemoglobin and myoglobin to evaluate tissue oxygenation and indirectly can measure regional hemodynamics and blood flow. Near-infrared light (NIR) can propagate through tissues and at particular wavelengths is differentially absorbed by oxygenated vs. deoxygenated forms of hemoglobin and myoglobin. Illumination of intact tissue with NIR allows qualitative assessment of changes in the tissue concentration of these molecules. The analysis is also used to determine body composition. |
NIR Spectroscopy,Spectrometry, Near-Infrared,NIR Spectroscopies,Near-Infrared Spectrometries,Near-Infrared Spectrometry,Near-Infrared Spectroscopies,Near-Infrared Spectroscopy,Spectrometries, Near-Infrared,Spectrometry, Near Infrared,Spectroscopies, NIR,Spectroscopies, Near-Infrared,Spectroscopy, NIR,Spectroscopy, Near Infrared |
|