Bifidobacterium inopinatum sp. nov. and Bifidobacterium denticolens sp. nov., two new species isolated from human dental caries. 1996

F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
Istituto di Citomorfologia Normale e Patologica, Consiglio Nazionale della Ricerche, Sezione di Bologna, Italy.

In a previous investigation of bifidobacteria isolated from human dental caries (V. Scardovi and F. Crociani, Int. J. Syst. Bacteriol. 24:6-20, 1974), 40 strains were assigned to the new species Bifidobacterium dentium. In this study we examined 70 new strains of bifidobacteria isolated from dental caries. The morphological characteristics, biochemical reactions, fermentation patterns, end products from glucose metabolism, protein electrophoretic patterns, levels of DNA hybridization, and DNA G+C contents of these organisms revealed that they belong to three different taxa. One of these taxa was identified as B. dentium. The other two are described as the following new Bifidobacterium species in this paper: Bifidobacterium inopinatum (type strain, DSM 10107) and Bifidobacterium denticolens (type strain, DSM 10105). The two new species differ from other Bifidobacterium species in their morphological characteristics (especially B. inopinatum, with its very small coccoid cells), in their carbohydrate fermentation patterns (most strains ferment dextran, and B. inopinatum does not ferment galactose), and in their DNA base compositions (especially B. inopinatum).

UI MeSH Term Description Entries
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003731 Dental Caries Localized destruction of the tooth surface initiated by decalcification of the enamel followed by enzymatic lysis of organic structures and leading to cavity formation. If left unchecked, the cavity may penetrate the enamel and dentin and reach the pulp. Caries, Dental,Carious Lesions,Dental Cavities,Dental Cavity,Dental Decay,Dental White Spots,Carious Dentin,Decay, Dental,Dental White Spot,White Spot, Dental,White Spots, Dental,Carious Dentins,Carious Lesion,Cavities, Dental,Cavity, Dental,Dentin, Carious,Dentins, Carious,Lesion, Carious,Lesions, Carious,Spot, Dental White,Spots, Dental White
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005285 Fermentation Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID. Fermentations
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001644 Bifidobacterium A rod-shaped, gram-positive, non-acid-fast, non-spore-forming, non-motile bacterium that is a genus of the family Bifidobacteriaceae, order Bifidobacteriales, class ACTINOBACTERIA. It inhabits the intestines and feces of humans as well as the human vagina.
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
May 2002, International journal of systematic and evolutionary microbiology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
April 1984, The Journal of applied bacteriology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
January 1990, International journal of systematic bacteriology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
September 2014, International journal of systematic and evolutionary microbiology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
December 2010, International journal of systematic and evolutionary microbiology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
January 2020, Systematic and applied microbiology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
May 2015, Genome announcements,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
September 2020, Systematic and applied microbiology,
F Crociani, and B Biavati, and A Alessandrini, and C Chiarini, and V Scardovi
February 2015, Systematic and applied microbiology,
Copied contents to your clipboard!