Spontaneous and drug-stimulated locomotor activity after the administration of pertussis toxin into the ventral tegmental area. 1996

S Narayanan, and L Wallace, and N Uretsky
Division of Pharmacology, Ohio State University, Columbus 43210, USA.

Pertussis toxin (PTX) injected into the ventral tegmental area (VTA) produces an enhanced locomotor response to amphetamine. In the present study, we have evaluated the role of dopamine receptors on spontaneous locomotor activity and the enhanced locomotor response to dopaminergic agonists after the administration of PTX into the VTA. PTX injected into the VTA of rats produced a delayed increase in spontaneous locomotor activity with a latency of 4 d. This activity was markedly increased by day 6 and remained elevated for at least 28 d after PTX treatment. This increased spontaneous locomotor activity of PTX-treated animals was antagonized by the administration of the D1 receptor antagonist SCH23390 (0.03 and 0.1 mg/kg sc), but not by the D2 receptor antagonist eticlopride (0.1 and 0.3 mg/kg sc). After adaptation to the locomotor cages, the animals showed a markedly enhanced motor response to amphetamine (0.5 mg/kg ip) and apomorphine (5 mg/kg sc). The heightened locomotor responses to these dopaminergic agonists could be elicited for at least 2 mo after PTX administration. The enhanced response to amphetamine was antagonized by the administration of SCH23390 (0.03 and 0.1 mg/kg sc), but not by eticlopride (0.1 mg/kg). The increased response to apomorphine in PTX-treated animals was inhibited by SCH23390 (0.1 mg/kg sc) and partially inhibited by eticlopride (0.1 mg/kg sc). Both of these antagonists inhibited the spontaneous and the drug-induced locomotor responses in vehicle-treated control animals. These results suggest that the administration of PTX into the VTA leads to an increase in spontaneous and drug-induced locomotor activity in which D1 receptors seem to play an important role.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003913 Dextroamphetamine The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic. d-Amphetamine,Curban,Dexamfetamine,Dexamphetamine,Dexedrine,Dextro-Amphetamine Sulfate,DextroStat,Dextroamphetamine Sulfate,Oxydess,d-Amphetamine Sulfate,dextro-Amphetamine,Dextro Amphetamine Sulfate,Sulfate, Dextroamphetamine,d Amphetamine,d Amphetamine Sulfate,dextro Amphetamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Narayanan, and L Wallace, and N Uretsky
February 1979, Brain research,
S Narayanan, and L Wallace, and N Uretsky
May 1979, Neuropharmacology,
S Narayanan, and L Wallace, and N Uretsky
December 2007, Behavioral neuroscience,
S Narayanan, and L Wallace, and N Uretsky
December 1981, Brain research,
S Narayanan, and L Wallace, and N Uretsky
February 2004, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Copied contents to your clipboard!