Control of ornithine decarboxylase activity by polyamines and absence of antizyme in Tetrahymena. 1996

K Koguchi, and Y Murakami, and S Hayashi
Department of Nutrition, Jikei University School of Medicine, Tokyo, Japan.

1. In cells of Tetrahymena pyriformis and thermophila, ODC activity was significantly suppressed but ODC decay was not stimulated by putrescine. 2. Free antizyme and ODC-antizyme complex were both not detected in extracts of cells of T. pyriformis treated with putrescine. 3. It was concluded that in Tetrahymena, unlike vertebrate cells, ODC is not subject to polyamine-induced destabilization mediated by antizyme.

UI MeSH Term Description Entries
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013095 Spermidine A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
D013096 Spermine A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
D013768 Tetrahymena A genus of ciliate protozoa commonly used in genetic, cytological, and other research. Tetrahymenas
D015317 Biogenic Polyamines Biogenic amines having more than one amine group. These are long-chain aliphatic compounds that contain multiple amino and/or imino groups. Because of the linear arrangement of positive charge on these molecules, polyamines bind electrostatically to ribosomes, DNA, and RNA. Polyamines, Biogenic
D065108 Ornithine Decarboxylase Inhibitors Substances and drugs that inhibit or block the activity of ORNITHINE DECARBOXYLASE. Decarboxylase Inhibitors, Ornithine,Inhibitors, Ornithine Decarboxylase

Related Publications

K Koguchi, and Y Murakami, and S Hayashi
May 1981, Journal of cellular physiology,
K Koguchi, and Y Murakami, and S Hayashi
December 1978, European journal of biochemistry,
K Koguchi, and Y Murakami, and S Hayashi
May 2015, Microbial cell (Graz, Austria),
K Koguchi, and Y Murakami, and S Hayashi
April 1994, Proceedings of the National Academy of Sciences of the United States of America,
K Koguchi, and Y Murakami, and S Hayashi
August 2011, The Journal of biological chemistry,
K Koguchi, and Y Murakami, and S Hayashi
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
K Koguchi, and Y Murakami, and S Hayashi
January 1983, Methods in enzymology,
K Koguchi, and Y Murakami, and S Hayashi
January 1988, Advances in experimental medicine and biology,
Copied contents to your clipboard!