Autoantibodies to the insulin receptor. Effect on the insulin-receptor interaction in IM-9 lymphocytes. 1977

J S Flier, and C R Kahn, and D B Jarrett, and J Roth

The serum of some patients with insulin-resistant "diabetes" contains antibodies that bind to and block the cell membrane receptors for insulin. In this report, we have characterized the effects of the antireceptor antibodies on the interaction of (125)I-insulin with its receptor on the human lymphoblastoid cell line IM-9. Up to 95% of specific insulin binding can be inhibited by pretreatment of the cells with these immunoglobulins. The onset of the inhibitory effect is time- and temperature-dependent, and the effect is reversed extremely slowly if the cells are suspended in a large excess of antibody-free buffer. These features of antibody binding can be easily distinguished from those for insulin binding to its receptor. The inhibitory effect of the antibodies can be reversed by exposure of the cells to conditions known to elute surface immunoglobulins. The three antireceptor sera studied appear to alter the insulin-receptor interaction in different ways. Two antisera markedly reduce receptor affinity through combined effects on the insulin association and dissociation rates, and, additionally, have smaller effects on available receptor number. A third antiserum primarily affects available receptor number and has little effect on receptor affinity. All three antisera inhibit the capacity of insulin to promote negatively cooperative site-site interactions among insulin receptors. The data suggest that these autoantibodies to the insulin receptor bind to different determinants on the receptor and may therefore be useful as unique probes of insulin receptor structure and function.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody

Related Publications

J S Flier, and C R Kahn, and D B Jarrett, and J Roth
September 1981, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
July 1987, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
February 1988, The Journal of clinical investigation,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
October 1980, The Journal of biological chemistry,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
February 1982, Diabetes,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
August 1980, The Journal of biological chemistry,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
February 1981, Proceedings of the National Academy of Sciences of the United States of America,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
November 1982, Metabolism: clinical and experimental,
J S Flier, and C R Kahn, and D B Jarrett, and J Roth
May 1982, Diabetes,
Copied contents to your clipboard!