Skeletal muscle metabolism in experimental heart failure. 1996

P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
Fondazione Salvatore Maugeri, Clinica del Lavoro e della Riabilitazione, Gussago, Brescia, Italy.

We studied peripheral skeletal muscle metabolism in monocrotaline-treated rats. Two distinct groups emerged: a percentage of the animals developed ventricular hypertrophy, with no signs of heart failure (compensated group), whilst others, besides ventricular hypertrophy, developed the syndrome of congestive heart failure (CFH group). Oxidative metabolism and redox cellular state were expressed in terms of creatine phosphate, purine (ATP, ADP and AMP) and pyridine (NAD and NADH) nucleotides tissue content. Skeletal muscles with different metabolism were studied: (a) Soleus (oxidative), (b) extensor digitorium longus (glycolytic) and tibialis anterior (oxidative and glycolytic). The results showed that in CFH animals a decreased high-energy phosphates content occurs in the soleus and extensor digitorum longus, but not in the tibialis anterior. In the soleus. ATP declined from 20.31 +/- 2.5 of control group to 9.55 +/- 0.61 mumol/g dry wt. while in the extensor digitorum longus ATP declined from 30.92 +/- 2.68 to 22.7 +/- 1.54 mumol/g dry wt. In both these muscles, a shift of NAD/NADH couple towards oxidation was also observed (from 26.58 +/- 3.34 to 6.95 +/- 0.97 and from 18.88 +/- 3.43 to 10.57 +/- 1.61, respectively). These alterations were more evident in the aerobic soleus muscle. On the contrary, no major changes occurred in skeletal muscle metabolism of compensated animals. The results show that: (1) a decrease in muscle high-energy phosphates occurs in CFH; (2) this is accompanied by a decrease of NAD/NADH couple suggesting an impairment in oxygen utilization or availability.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D006332 Cardiomegaly Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES. Cardiac Hypertrophy,Enlarged Heart,Heart Hypertrophy,Heart Enlargement,Cardiac Hypertrophies,Enlargement, Heart,Heart Hypertrophies,Heart, Enlarged,Hypertrophies, Cardiac,Hypertrophies, Heart,Hypertrophy, Cardiac,Hypertrophy, Heart
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
December 1994, The American journal of physiology,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
August 1995, Acta physiologica Scandinavica,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
August 1991, The American journal of physiology,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
January 2013, Current opinion in clinical nutrition and metabolic care,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
January 1998, Fundamental & clinical pharmacology,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
April 1992, Circulation,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
April 2006, The Canadian journal of cardiology,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
October 2003, American journal of physiology. Heart and circulatory physiology,
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
January 1993, Lancet (London, England),
P Bernocchi, and C Ceconi, and P Pedersini, and E Pasini, and S Curello, and R Ferrari
October 1997, Cardiologia (Rome, Italy),
Copied contents to your clipboard!