Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. 1996

R Merletti, and S Roy
NeuroMuscular Research Center, Boston University, MA, USA.

Endurance is a clinically relevant muscle parameter. It would be desirable to be able to estimate it without the need for a contraction sustained to exhaustion. The purpose of this work was to investigate the capability of the initial rate of spectral compression of the surface electromyographic (EMG) signal to predict mechanical endurance during sustained voluntary contractions of the human tibialis anterior muscle. Six healthy subjects performed voluntary isometric contractions of the tibialis anterior at 80, 70, 60, and 50% of the maximal voluntary contraction level. The contractions were sustained for 90, 120, 150, and 170 seconds, respectively. These intervals exceed the normal endurance time for this muscle and allow for a decrease of torque output. The slope of the median frequency, computed over the first 30 seconds of the contraction, was used to describe the initial spectral compression of the EMG signal. Significant correlations were found: 1) between contraction level and endurance time (p < 0.05 for each subject) and 2) between median (or mean) frequency slope and endurance time (p < 0.0001 for all subjects pooled together). The regression between median frequency slope and endurance time showed intersubject variations possibly related to the tibialis anterior muscle fiber type content. It is concluded that clinical use of the EMG spectral technique in assessing muscle fatigue may enable the clinician to estimate the endurance time without having the subject sustain a contraction until the point of contractile failure. This could be an advantage for some patient populations, such as the severely disabled, arthritic, or frail elderly, that might not be able to tolerate long duration contractions.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008297 Male Males
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018763 Muscle Fatigue A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle. Fatigue, Muscle,Muscular Fatigue,Fatigue, Muscular

Related Publications

R Merletti, and S Roy
November 1990, Journal of applied physiology (Bethesda, Md. : 1985),
R Merletti, and S Roy
January 1996, European journal of applied physiology and occupational physiology,
R Merletti, and S Roy
April 2008, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
R Merletti, and S Roy
June 2018, Annals of agricultural and environmental medicine : AAEM,
R Merletti, and S Roy
September 1980, Journal of human ergology,
R Merletti, and S Roy
January 2003, Medicina (Kaunas, Lithuania),
R Merletti, and S Roy
June 1978, Clinical science and molecular medicine,
Copied contents to your clipboard!