Modulation of cortical acetylcholine release by serotonin: the role of substance P interneurons. 1996

T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
Sektion Klinische Neuropharmakologie, Neurologischen Universitätsklinik, Freiburg, Germany..

The cholinergic system exerts an important modulatory effect on hippocampal functions. Presynaptic inhibition of hippocampal and neocortical acetylcholine (ACh) release by serotonin (5-HT) has been reported in both rat and human brain. There is some controversy, however, concerning the 5-HT receptor which mediates the inhibitory effects of 5-HT. Using slices of the hippocampal formation of rat prelabelled with [3H]-overflow ([3H]-choline, superfused and depolarized electrically (2 min, 3 Hz, 2 ms, 24 mA) or by K+ (20 mM) we observed that 5-HT inhibits hippocampal and entorhinal [3H]-overflow ([3H]-ACh release) by 5-HT1B receptors located on cholinergic terminals. However, this inhibition requires the functional elimination of substance P/gamma-aminobutyric acid (SP/GABA) interneurons which express 5-HT2A receptors as shown by in situ hybridisation histochemistry. Activation of these somadendritically located 5-HT2a receptors facilitates SP release. SP, in turn, stimulates hippocampal [3H]-ACh release through NK1 receptors present on cholinergic terminals. These findings suggest close links between cholinergic afferents, SP interneurons and 5-HT2 receptors. A loss of cholinergic afferents and 5-HT2 receptors, along with a reduction in substance P-immunoreactive neurons, have been observed in the brains of patients suffering from Alzheimer's disease, suggesting the concept that these three alterations reflect a disruption of a functional unit. The present findings might help to explain early pathological changes in Alzheimer's disease.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D010869 Pindolol A moderately lipophilic beta blocker (ADRENERGIC BETA-ANTAGONISTS). It is non-cardioselective and has intrinsic sympathomimetic actions, but little membrane-stabilizing activity. (From Martindale, The Extra Pharmocopoeia, 30th ed, p638) Prindolol,LB-46,Visken,LB 46,LB46
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin

Related Publications

T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
May 1981, Brain research,
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
January 1982, Digestive diseases and sciences,
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
March 2001, Synapse (New York, N.Y.),
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
November 1993, Brain research,
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
January 1999, Neuroscience,
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
December 1999, Neurochemistry international,
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
June 1988, Arerugi = [Allergy],
T J Feuerstein, and O Gleichauf, and G B Landwehrmeyer
July 1978, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!