Interaction of Ca2(+)-activated K+ channels with refolded charybdotoxins mutated at a central interaction residue. 1996

A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
Howard Hughes Medical Institute, Graduate Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA.

Charybdotoxin is a small peptide blocker of K+ channels, rigidly held in active conformation by three disulfide bonds. The toxin blocks K+ channels by binding to a receptor site located at the external "vestibule", and thus physically occluding the outer opening of the K+ conduction pore. In the blocked complex, K27, a residue on the toxin's molecular surface, projects its epsilon-amino group into the K(+)-selective pore. The results here show that CTX, produced by heterologous expression in E. coli, may be manipulated to place unnatural positively charged residues at position 27. The toxin folds faithfully to its native conformation when the crucial lysine at position 27 is replaced by a cysteine residue, a maneuver that allows specific chemical modification of this side-chain. Replacements of K27 by side-chains slightly shorter or slightly longer than lysine yield active toxins. The toxin variant with ornithine at this position interacts much less strongly with K+ ions in the pore of slowpoke-type Ca2(+)-activated K+ channels than does wild-type toxin. This result argues that the epsilon-amino group of K27 in bound toxin lies only a few ångstroms away from a K+ ion occupying the blocked pore. The peptide folds with high efficiency to form the correct disulfides even in the presence of strong denaturants.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009952 Ornithine An amino acid produced in the urea cycle by the splitting off of urea from arginine. 2,5-Diaminopentanoic Acid,Ornithine Dihydrochloride, (L)-Isomer,Ornithine Hydrochloride, (D)-Isomer,Ornithine Hydrochloride, (DL)-Isomer,Ornithine Hydrochloride, (L)-Isomer,Ornithine Monoacetate, (L)-Isomer,Ornithine Monohydrobromide, (L)-Isomer,Ornithine Monohydrochloride, (D)-Isomer,Ornithine Monohydrochloride, (DL)-Isomer,Ornithine Phosphate (1:1), (L)-Isomer,Ornithine Sulfate (1:1), (L)-Isomer,Ornithine, (D)-Isomer,Ornithine, (DL)-Isomer,Ornithine, (L)-Isomer,2,5 Diaminopentanoic Acid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D051036 Large-Conductance Calcium-Activated Potassium Channels A major class of calcium activated potassium channels whose members are voltage-dependent. MaxiK channels are activated by either membrane depolarization or an increase in intracellular Ca(2+). They are key regulators of calcium and electrical signaling in a variety of tissues. BK Channel,Big K Channel,Large-Conductance Calcium-Activated Potassium Channel,Maxi K Channel,Maxi-K Channel,MaxiK Channel,BK Channels,Big K Channels,Maxi-K Channels,MaxiK Channels,Channel, BK,Channel, Big K,Channel, Maxi K,Channel, Maxi-K,Channel, MaxiK,K Channel, Big,K Channel, Maxi,Large Conductance Calcium Activated Potassium Channel,Large Conductance Calcium Activated Potassium Channels,Maxi K Channels

Related Publications

A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
January 1989, Pflugers Archiv : European journal of physiology,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
January 1997, Trends in pharmacological sciences,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
September 1989, The American journal of physiology,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
July 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
June 2000, Nature neuroscience,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
January 2002, Novartis Foundation symposium,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
March 2012, Journal of cell science,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
September 2012, Cerebellum (London, England),
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
October 1990, Proceedings. Biological sciences,
A A Naini, and E Shimony, and E Kozlowski, and T Shaikh, and W Dang, and C Miller
January 2004, The Journal of physiology,
Copied contents to your clipboard!