Dopamine-glutamate interactions in the striatum: behaviourally relevant modification of excitotoxicity by dopamine receptor-mediated mechanisms. 1996

S Garside, and J C Furtado, and M F Mazurek
Department of Psychiatry, McMaster University Medical Centre, Hamilton, Ontario, Canada.

The two most important afferent projections to the striatum contain glutamate and dopamine, respectively. Excitotoxic damage resulting from excessive stimulation of the N-methyl-D-aspartate subtype of glutamate receptor has been implicated in pathophysiology of ischaemic stroke, hypoglycaemic brain damage and Huntington's disease. We studied the ability of the dopamine system to modify the anatomical, neurochemical and behavioural consequences of glutamatergic toxicity in the striatum. In a first set of experiments, the specific N-methyl-D-aspartate receptor agonist quinolinate was injected unilaterally into the striatum of rats pretreated with one of (i) intraperitoneal (i.p.) saline (controls); (ii) i.p. haloperidol, a D2 dopamine receptor agonist; or (iii) 6-hydroxydopamine lesion of the ipsilateral nigrostriatal tract. Quinolinate-induced striatal damage, as assessed by morphometric and neurochemical criteria, was significantly attenuated in the animals with 6-hydroxydopamine lesions and in those pretreated with haloperidol, compared with saline-pretreated controls. There were no significant differences between the 6-OHDA and haloperidol groups. In a second set of experiments, animals received (i) bilateral intrastriatal quinolinate plus perioperative i.p. saline; (ii) bilateral intrastriatal quinolinate plus i.p. haloperidol; or (iii) bilateral intrastriatal saline. Again, the quinolinate-lesioned animals treated with perioperative haloperidol had significantly less striatal damage than the bilateral quinolinate rats. Behavioural assessment in the Morris Water Maze showed the bilateral quinolinate+haloperidol group to be significantly less impaired on a spatial acquisition task than the bilateral quinolinate animals. Measures of spontaneous daytime motor activity showed significant differences in average speed and rest time between the bilateral quinolinate+haloperidol rats and the bilateral quinolinate group. The performance of the bilateral quinolinate+haloperidol group was not significantly different from that of controls on any of the behavioural tasks. These results indicate an important role for D2 dopamine receptor-mediated mechanisms in striatal excitotoxicity. Since the excitotoxic process involves the same fundamental signalling mechanism that is involved in normal glutamatergic transmission, these findings imply an ability of D2 receptor blockade to modify glutamate signalling in the striatum. These results may have implications for treatment strategies in ischaemic stroke, hypoglycaemic brain damage and schizophrenia.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Garside, and J C Furtado, and M F Mazurek
March 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Garside, and J C Furtado, and M F Mazurek
February 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Garside, and J C Furtado, and M F Mazurek
August 1994, Neurochemistry international,
S Garside, and J C Furtado, and M F Mazurek
January 1993, Advances in neurology,
S Garside, and J C Furtado, and M F Mazurek
January 1998, Advances in pharmacology (San Diego, Calif.),
S Garside, and J C Furtado, and M F Mazurek
September 1995, Journal of computational neuroscience,
S Garside, and J C Furtado, and M F Mazurek
January 2017, Neuropharmacology,
S Garside, and J C Furtado, and M F Mazurek
November 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Garside, and J C Furtado, and M F Mazurek
July 1997, Neuroscience and biobehavioral reviews,
Copied contents to your clipboard!