Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. 1996

A de Bustos, and A Cuadrado, and C Soler, and N Jouve
Department of Plant Breeding, CIT, INIA, La Canaleja, Madrid, Spain.

The genetic relationships between several wild species and subspecies of the genus Hordeum were assessed using fluorescence in situ hybridization (FISH). Plant material included natural populations of wild barley growing in Spain of the annual species, H. marinum ssp. marinum (2n = 14) and gussoneanum (2n = 14), and H. murinum ssp. murinum (2n = 28), and leporinum (2n = 28) and the perennial species H. bulbosum (2n = 14) and H. secalinum (2n = 28), plus the South American perennial species H. chilense (2n = 14). FISH was used to locate the chromosomal sites of two rDNA multigene families 5S and 18S-26S (pTa71 and pTa794) and three repetitive DNA sequences (pSc119.2, pAs1 and pHch950) isolated from different species and genera. The seven chromosomes of the diploid species were readily distinguished by their external morphology and hybridization patterns to pTa71, pTa794, pSc119.2 and pAs1. These DNA probes were also useful for the identification of homologous chromosomes and in differentiating these from unidentified chromosomes in the tetraploid taxa. The use of the probe pHch950 permitted intergenomic differentiation in tetraploids and supports the diphyletic origin of H. murinum and H. secalinum. The in situ experiments yielded the following conclusions: (1) differences between the sub-species marinum and gussoneanum; (2) close relationships between the subspecies murinum and leporinum; and (3) major differences in physical mapping between H. bulbosum and the remaining taxa. The genomic and phylogenetic relationships between taxa, as inferred from the results, are discussed.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D002965 Classification The systematic arrangement of entities in any field into categories classes based on common characteristics such as properties, morphology, subject matter, etc. Systematics,Taxonomy,Classifications,Taxonomies
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D001467 Hordeum A plant genus of the family POACEAE. The EDIBLE GRAIN, barley, is widely used as food. Barley,Hordeum vulgare
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012337 RNA, Ribosomal, 18S Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 18S Ribosomal RNA,18S RRNA,RNA, 18S Ribosomal,Ribosomal RNA, 18S
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S

Related Publications

A de Bustos, and A Cuadrado, and C Soler, and N Jouve
February 1995, Genome,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
October 2000, Genome,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
January 2009, Cytogenetic and genome research,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
May 2001, Heredity,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
January 2002, Cellular & molecular biology letters,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
December 1994, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
July 2005, Annals of botany,
A de Bustos, and A Cuadrado, and C Soler, and N Jouve
January 2001, The Journal of heredity,
Copied contents to your clipboard!