The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. 1996

M Schultze, and A Kondorosi
Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France. Michael.Schultze@isv.cnrs-gif.fr

Lipochitooligosaccharides (Nod signals) excreted by rhizobia induce the formation of symbiotic root nodules in leguminous plants. This process is host plant specific, depending on the structural modifications of Nod signals. Rapid responses of plant roots in single cell assays have provided powerful tools in dissecting Nod signal transduction pathways and in elucidating the molecular basis of host specificity. Recent findings indicate that lipochitooligosaccharides, as well as symbiosis-related genes, also function in non legumes, pointing to a general role for these elements in plant morphogenesis.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D013559 Symbiosis The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other. Endosymbiosis,Commensalism,Mutualism
D059828 Plant Cells Basic functional unit of plants. Cell, Plant,Cells, Plant,Plant Cell

Related Publications

M Schultze, and A Kondorosi
March 2023, Breeding science,
M Schultze, and A Kondorosi
December 1994, Plant molecular biology,
M Schultze, and A Kondorosi
April 1992, The Plant cell,
M Schultze, and A Kondorosi
December 2018, Current biology : CB,
M Schultze, and A Kondorosi
August 2012, Molecules and cells,
M Schultze, and A Kondorosi
February 2024, Proceedings of the National Academy of Sciences of the United States of America,
M Schultze, and A Kondorosi
December 2008, Science signaling,
M Schultze, and A Kondorosi
December 2021, Plants (Basel, Switzerland),
Copied contents to your clipboard!