Helix unwinding in the effector region of elongation factor EF-Tu-GDP. 1996

G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
Institute of Molecular and Structural Biology, Aarhus University, Langelandsgade, Denmark.

BACKGROUND Elongation factor Tu (EF-Tu) in its GTP conformation is a carrier of aminoacylated tRNAs (aa-tRNAs) to the ribosomal A site during protein biosynthesis. The ribosome triggers GTP hydrolysis, resulting in the dissociation of EF-Tu-GDP from the ribosome. The affinity of EF-Tu for other molecules involved in this process, some of which are unknown, is regulated by two regions (Switch I and Switch II) that have different conformations in the GTP and GDP forms. The structure of the GDP form of EF-Tu is known only as a trypsin-modified fragment, which lacks the Switch I, or effector, domain. The aim of this work was to establish the overall structure of intact EF-Tu-GDP, in particular the structure of the effector domain. RESULTS The crystal structures of intact EF-Tu-GDP from Thermus aquaticus and Escherichia coli have been determined at resolutions of 2.7 A and 3.8 A, respectively. The structures confirm the domain orientation previously found in the structure of partially trypsin-digested EF-Tu-GDP. The structures of the effector region in T. aquaticus and E. coli EF-Tu-GDP are very similar. The C-terminal part of the effector region of EF-Tu-GDP is a beta hairpin; in EF-Tu-GTP, this region forms an alpha helix. This conformational change is not a consequence of crystal packing. CONCLUSIONS EF-Tu undergoes major conformational changes upon GTP hydrolysis. Unlike other GTP-binding proteins, EF-Tu exhibits a dramatic conformational change in the effector region, involving an unwinding of a small helix and the formation of a beta hairpin structure. This change is presumably involved in triggering the release of tRNA, and EF-Tu, from the ribosome.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
March 1990, Biochemistry,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
May 1998, The Journal of biological chemistry,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
October 1996, Molecular microbiology,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
January 2019, Frontiers in microbiology,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
December 1997, The Journal of biological chemistry,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
November 1983, European journal of biochemistry,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
November 1998, Biochemical and biophysical research communications,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
August 2002, Biochemical and biophysical research communications,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
January 1999, Journal of molecular biology,
G Polekhina, and S Thirup, and M Kjeldgaard, and P Nissen, and C Lippmann, and J Nyborg
January 1991, Molekuliarnaia biologiia,
Copied contents to your clipboard!