Tyrosine phosphorylation of GSalpha and inhibition of bradykinin-induced activation of the cyclic AMP pathway in A431 cells by epidermal growth factor receptor. 1996

C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
Institut für Biochemie und Biophysik, Biologisch-Pharmazeutische Fakultät der Friedrich-Schiller-Universität, Philosophenweg 12, D-07743 Jena, Federal Republic of Germany.

An increasing amount of experimental data suggest that cross-talk exists between pathways involving tyrosine kinases and heterotrimeric G proteins. In a previous study, we demonstrated that bradykinin (BK) increases the intracellular accumulation of cAMP in the human epidermoid carcinoma cell line A431 by stimulating adenylate cyclase activity via a stimulatory G protein (Gsalpha) (Liebmann, C., Graness, A., Ludwig, B., Adomeit, A., Boehmer, A., Boehmer, F.-D., Nürnberg, B., and Wetzker, R. (1996) Biochem. J. 313, 109-118). Here, we present several lines of evidence indicating the ability of epidermal growth factor (EGF) to suppress BK-induced activation of the cAMP pathway in A431 cells via tyrosine phosphorylation of Gsalpha. Gsalpha was specifically immunoprecipitated from A431 cells using the anti-alphas antiserum AS 348. Tyrosine phosphorylation of Gsalpha was detectable in EGF-pretreated cells with monoclonal anti-phosphotyrosine antibodies. Additionally, A431 cells were labeled with [32P]orthophosphate in vivo and treated with EGF, and the resolved immunoprecipitates were subjected to amino acid analysis. The results clearly indicate that EGF induces tyrosine phosphorylation of Gsalpha in A431 cells. Treatment of A431 cells with EGF decreased BK-induced cAMP accumulation in intact cells as well as the stimulation of adenylate cyclase by BK, NaF, and guanyl nucleotides, but not by forskolin. Also, EGF treatment abolished both the BK- and isoprenaline-induced stimulation of guanosine 5'-O-(3-[35S]thiotriphosphate) binding to Gsalpha. In contrast, the BK-evoked, Gq-mediated stimulation of inositol phosphate formation in A431 cells was not affected by EGF pretreatment. Thus, EGF-induced tyrosine phosphorylation of Gsalpha is accompanied by a loss of its susceptibility to G protein-coupled receptors and its ability to stimulate adenylate cyclase via guanyl nucleotide exchange. We propose that Gsalpha may represent a key regulatory protein in the cross-talk between the signal transduction pathways of BK and EGF in A431 cells.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine

Related Publications

C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
March 1996, The Journal of biological chemistry,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
August 1995, Carcinogenesis,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
March 1988, Molecular and cellular biology,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
July 1990, FEBS letters,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
June 1981, Cell,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
January 1990, Drugs under experimental and clinical research,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
January 2002, The Journal of biological chemistry,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
February 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
February 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
C Liebmann, and A Graness, and A Boehmer, and M Kovalenko, and A Adomeit, and T Steinmetzer, and B Nürnberg, and R Wetzker, and F D Boehmer
March 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!