Regulation of endothelin-1 expression in the bovine corpus luteum: elevation by prostaglandin F 2 alpha. 1996

E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
Department of Animal Science, Section of Reproduction, The Hebrew University of Jerusalem, Rehovot, Israel.

Prostaglandin F2alpha (PGF2alpha) has been recognized as the physiological luteolysin in ruminants and other species for more than three decades; however, the mechanisms involved in its action are poorly understood. We previously have shown that endothelin-1 (ET-1) mediates, at least in part, the action of PGF2alpha, and the current study examines the effect of PGF2alpha on the expression of ET-1 in bovine corpus luteum (CL). Endothelins (ETs) were extracted from CL, collected at various times of the estrous cycle, and highest levels were found during luteolysis. The expression of prepro-ET-1 was also highest in regressing CL, suggesting that PGF2alpha may have elevated ET-1 expression. This was confirmed by demonstrating that administration of PGF2alpha to heifers at midcycle elevated luteal ET-1 expression. Levels were induced as soon as 2 h after PGF2alpha treatment and 24 h later were 7-fold higher than preinjection levels. Endothelial cells isolated from bovine CL produced ET-1, and addition of PGF2alpha, oxytocin (OT), and vasopressin-augmented ET biosynthesis. Induction of ET-1 expression by PGF2alpha in these cells was evident after a short incubation time (15-90 min). Taken together, these data suggest that stimulation of luteal ET-1 expression by PGF2alpha may be achieved by several nonmutually exclusive mechanisms: 1) by acting directly on luteal endothelial cells; 2) indirectly, via OT release from large luteal cells; and 3) by causing hypoxia in the CL (as a result of ET-1-induced vasoconstriction). The latter mechanism may serve to augment ET-1 secretion in a positive-feedback process.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D001808 Blood Vessels Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins). Blood Vessel,Vessel, Blood,Vessels, Blood
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003338 Corpus Luteum The yellow body derived from the ruptured OVARIAN FOLLICLE after OVULATION. The process of corpus luteum formation, LUTEINIZATION, is regulated by LUTEINIZING HORMONE. Corpora Lutea,Lutea, Corpora
D004971 Estrus The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015237 Dinoprost A naturally occurring prostaglandin that has oxytocic, luteolytic, and abortifacient activities. Due to its vasocontractile properties, the compound has a variety of other biological actions. PGF2,PGF2alpha,Prostaglandin F2,Prostaglandin F2alpha,9alpha,11beta-PGF2,Enzaprost F,Estrofan,PGF2 alpha,Prostaglandin F2 alpha,9alpha,11beta PGF2,F2 alpha, Prostaglandin,F2alpha, Prostaglandin,alpha, PGF2
D019332 Endothelin-1 A 21-amino acid peptide produced in a variety of tissues including endothelial and vascular smooth-muscle cells, neurons and astrocytes in the central nervous system, and endometrial cells. It acts as a modulator of vasomotor tone, cell proliferation, and hormone production. (N Eng J Med 1995;333(6):356-63) Big Endothelin,Big Endothelin-1,Endothelin Type 1,Endothelin, Big,Preproendothelin,Preproendothelin-1,Proendothelin (1-38),Proendothelin-1 Precursor,Big Endothelin 1,Endothelin 1,Endothelin-1, Big,Precursor, Proendothelin-1,Preproendothelin 1,Proendothelin 1 Precursor

Related Publications

E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
December 1996, Endocrinology,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
April 1971, Annals of the New York Academy of Sciences,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
December 2001, Biology of reproduction,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
September 1988, Prostaglandins,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
August 2008, Reproduction in domestic animals = Zuchthygiene,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
January 1995, Biology of reproduction,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
January 1976, Medycyna weterynaryjna,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
December 2001, Endocrinology,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
February 2005, Molecular reproduction and development,
E Girsh, and W Wang, and R Mamluk, and F Arditi, and A Friedman, and R A Milvae, and R Meidan
November 1998, American journal of reproductive immunology (New York, N.Y. : 1989),
Copied contents to your clipboard!