Phosphorylation of the herpes simplex virus type 1 tegument protein VP22. 1996

G Elliott, and D O'Reilly, and P O'Hare
Marie Curie Research Institute, The Chart, Oxteo, Surrey, United Kingdom. G.Elliott@MCRI.ac.uk

The herpes simplex virus type 1 tegument protein VP22 is known to be highly phosphorylated during infection. Here we show that two electrophoretic forms of VP22 can be identified in infected cell extracts and that this heterogeneity is accounted for by phosphorylation. Furthermore, the nonphosphorylated form of VP22 appears to be specifically incorporated into virions. We also show that the phosphorylated form of VP22 is the only form detected during transient transfection and as such that VP22 can act as a substrate for a cellular kinase. Phospho-amino acid and phospho-peptide analyses of in vivo labeled VP22 were utilized to demonstrate that the phosphorylation profiles of VP22 synthesized during transfection and infection are the same. In both cases VP22 was modified solely on serine residues located in the N-terminal 120 residues of the protein. Moreover, in vitro phosphorylation was utilized to show that the constitutive cellular kinase, casein kinase II, which has four serine consensus recognition sites at the N-terminus of VP22, phosphorylates VP22 in the same manner as observed in vivo. This kinase also phosphorylates VP22 at the N-terminus in intact capsid-tegument structures. Casein kinase II is therefore likely to be the major kinase of VP22 during infection.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases

Related Publications

G Elliott, and D O'Reilly, and P O'Hare
April 2003, Journal of virology,
G Elliott, and D O'Reilly, and P O'Hare
January 2007, Iranian biomedical journal,
G Elliott, and D O'Reilly, and P O'Hare
March 1992, The Journal of general virology,
G Elliott, and D O'Reilly, and P O'Hare
November 2008, Science in China. Series C, Life sciences,
G Elliott, and D O'Reilly, and P O'Hare
June 2011, Archives of virology,
G Elliott, and D O'Reilly, and P O'Hare
December 2012, Journal of virology,
G Elliott, and D O'Reilly, and P O'Hare
August 2018, Journal of virology,
Copied contents to your clipboard!