Understanding the binding of 5-substituted 2'-deoxyuridine substrates to thymidine kinase of herpes simplex virus type-1. 1996

H De Winter, and P Herdewijn
Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.

Thymidine kinase from HSV-1 (HSV-1 TK) is a key enzyme in the metabolic activation of antiviral nucleosides. High affinity of such compounds for the enzyme is required for efficient phosphorylation. In this study, affinity data from a series of 5-substituted 2'-deoxyuridine substrates in combination with the crystal structure of the viral enzyme were used to investigate the structural factors influencing the affinity of these compounds for the enzyme. Calculations showed that the binding energetics and conformations of thymidine and the 5-substituted 2'-uridine analogues are similar. The major part of the binding energy arises from interactions involving sugar and base moieties. Small differences in affinity for the enzyme are explained by the hydrophobicity of the 5-substituent or by its energetic complementarity with the active site pocket. In designing high-affinity nucleoside substrates of HSV-1 TK, care should be taken to maintain the geometry of the base moiety and sugar hydroxyl functionalities. Substitutions at the 5-position of the nucleobase should be lipophilic and characterized by well-defined geometrical properties. The present study represents a first quantitative explanation for HSV-1 TK affinity of 5-substituted 2'-deoxyuridines which are historically the first group of selective antivirals. The results may be used to design new and more potent compounds.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003857 Deoxyuridine 2'-Deoxyuridine. An antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemias due to vitamin B12 and folate deficiencies. (beta 1-(2-Deoxyribopyranosyl))thymidine
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine

Related Publications

H De Winter, and P Herdewijn
October 1979, The Journal of biological chemistry,
H De Winter, and P Herdewijn
February 1977, Antimicrobial agents and chemotherapy,
H De Winter, and P Herdewijn
December 1982, The Journal of general virology,
Copied contents to your clipboard!