Proteolytic artifacts in SDS-PAGE analysis of selected periodontal pathogens. 1996

M F Weidner, and D Grenier, and D Mayrand
Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire et Faculté des Sciences et de Génie, Université Laval, Québec, Canada.

The aim of the study was to examine whether proteolytic artifacts, which result in a loss and poor resolution of protein bands, occur during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis of cellular proteins from selected proteolytic (Porphyromonas gingivalis, Prevotella nigrescens and Treponema denticola) and non-proteolytic (Fusobacterium nucleatum) bacteria. Conditions to limit or prevent proteolysis were also investigated. Bacterial cells were incubated in solubilizing buffer (SDS+ beta mercaptoethanol) at room temperature for various periods of time before boiling. A control assay consisted of trichloroacetic acid-treated bacterial cells. Cellular proteins were separated by electrophoresis and stained with Coomassie blue. Proteolysis occurred very rapidly in the case of P. gingivalis (< 30 s), whereas a longer incubation time (> 1 h) was required to observe similar effects in P. nigrescens and T. denticola. No proteolysis was observed for F. nucleatum. In all cases, heat (100 degrees C) and low pH (< 4) treatments of bacterial cells could avoid production of proteolytic artifacts. Incorporation of specific protease inhibitors before solubilization of bacteria could also prevent proteolysis. More particularly, N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), iodoacetamide and diisopropylfluorophosphate (50 mM) were highly efficient for P. gingivalis, P. nigrescens and T. denticola, respectively. When outer membranes of P. gingivalis were prepared in the presence of TLCK, numerous additional protein brands, not seen in the absence of TLCK, were detected. The present study suggests that specific protease inhibitors, effective in preventing proteolysis, should be identified and added during cell fractionation and protein purification procedures.

UI MeSH Term Description Entries
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010510 Periodontal Diseases Pathological processes involving the PERIODONTIUM including the gum (GINGIVA), the alveolar bone (ALVEOLAR PROCESS), the DENTAL CEMENTUM, and the PERIODONTAL LIGAMENT. Parodontosis,Pyorrhea Alveolaris,Disease, Periodontal,Diseases, Periodontal,Parodontoses,Periodontal Disease
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D012967 Sodium Dodecyl Sulfate An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry. Sodium Lauryl Sulfate,Irium,Dodecyl Sulfate, Sodium,Lauryl Sulfate, Sodium,Sulfate, Sodium Dodecyl,Sulfate, Sodium Lauryl
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014208 Treponema A genus of microorganisms of the order SPIROCHAETALES, many of which are pathogenic and parasitic for man and animals.

Related Publications

M F Weidner, and D Grenier, and D Mayrand
May 1996, Trends in biochemical sciences,
M F Weidner, and D Grenier, and D Mayrand
January 1988, The International journal of biochemistry,
M F Weidner, and D Grenier, and D Mayrand
September 2013, Journal of pharmaceutical and biomedical analysis,
M F Weidner, and D Grenier, and D Mayrand
March 1989, Oral microbiology and immunology,
M F Weidner, and D Grenier, and D Mayrand
January 2006, Nature protocols,
M F Weidner, and D Grenier, and D Mayrand
January 2019, Methods in molecular biology (Clifton, N.J.),
M F Weidner, and D Grenier, and D Mayrand
January 2012, Methods in molecular biology (Clifton, N.J.),
M F Weidner, and D Grenier, and D Mayrand
June 2006, CSH protocols,
M F Weidner, and D Grenier, and D Mayrand
January 2012, Methods in molecular biology (Clifton, N.J.),
M F Weidner, and D Grenier, and D Mayrand
January 2019, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!