Renal cortical and medullary microvascular blood flow autoregulation in rat. 1996

L M Harrison-Bernard, and L G Navar
Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Previous studies have demonstrated the critical role of the afferent arteriole in autoregulation of nephron blood flow in response to changes in perfusion pressure. The present study focused on the responses of postglomerular vascular segments to alterations in renal arterial pressure. Afferent arterioles, efferent arterioles and outer medullary descending vasa recta of juxtamedullary nephrons were visualized using the in vitro blood-perfused juxtamedullary nephron technique. Simultaneous measurements of inside vessel diameter and centerline erythrocyte velocity were made in order to determine single vessel blood flow. Blood flow measured in afferent arterioles (N = 13) displayed efficient autoregulation of blood flow and afferent arterioles responded actively with decreases in arteriolar diameter during stepwise elevations of renal perfusion pressure from 100 to 150 mm Hg. Similarly, blood flow measured at efferent arterioles (N = 9) exhibited autoregulation during increases in renal perfusion pressure. However, efferent arteriolar diameters were not altered during increases in perfusion pressure. During superfusion with the calcium channel blocker, diltiazem (10 microM), which primarily dilates afferent arterioles, efferent arteriolar blood flow (N = 7) increased and responded to changes in perfusion pressure. Nevertheless, efferent arteriolar diameter remained unchanged and did not respond to increases in perfusion pressure. Outer medullary descending vasa recta (N = 7) diameter, centerline erythrocyte velocity and calculated blood flow were also not significantly altered following stepwise increases in pressure to 125 and 150 mm Hg. These data demonstrate effective autoregulation of postglomerular blood flow, measured at efferent arterioles and at outer medullary descending vasa recta, over a perfusion pressure range of 100 to 150 mm Hg. There was no dissociation of arteriolar and outer medullary descending vasa recta blood flow responses to increases in renal perfusion pressure indicative of efficient autoregulation in both cortical and medullary postglomerular circulations of the rat.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L M Harrison-Bernard, and L G Navar
January 2003, American journal of physiology. Regulatory, integrative and comparative physiology,
L M Harrison-Bernard, and L G Navar
July 1977, Pflugers Archiv : European journal of physiology,
L M Harrison-Bernard, and L G Navar
April 1998, Academic radiology,
L M Harrison-Bernard, and L G Navar
December 1998, Cardiovascular research,
L M Harrison-Bernard, and L G Navar
November 2000, Experimental physiology,
L M Harrison-Bernard, and L G Navar
January 1979, The American journal of physiology,
L M Harrison-Bernard, and L G Navar
March 2006, American journal of physiology. Renal physiology,
L M Harrison-Bernard, and L G Navar
May 2014, Anesthesiology,
L M Harrison-Bernard, and L G Navar
August 2012, Acta physiologica (Oxford, England),
L M Harrison-Bernard, and L G Navar
August 2001, Archives des maladies du coeur et des vaisseaux,
Copied contents to your clipboard!