Delayed rectification in the transverse tubules: origin of the late after-potential in frog skeletal muscle. 1977

G E Kirsch, and R A Nichols, and S Nakajima

Tetanic stimulation of skeletal muscle fibers elicits a train of spikes followed by a long-lasting depolarization called the late after-potential (LAP). We have conducted experiments to determine the origin of the LAP. Isolated single muscle fibers were treated with a high potassium solution (5 mM or 10 mM K) followed by a sudden reduction of potassium concentration to 2.5 mM. This procedure produced a slow repolarization (K repolarization), which reflects a diffusional outflow of potassium from inside the lumen of the transverse tubular system (T system). Tetanic stimulation was then applied to the same fiber and the LAP was recorded. The time courses of K repolarization and LAP decay were compared and found to be roughly the same. This approximate equality held under various conditions that changed the time courses of both events over a wide range. Both K repolarization and the LAP became slower as fiber radius increased. These results suggest that LAP decay and K repolarization represent the same process. Thus, we conclude that the LAP is caused by potassium accumulation in the T system. A consequence of this conclusion is that delayed rectification channels exist in the T system. A rough estimation suggests that the density of delayed rectification channels is less in the T system than in the surface membrane.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied

Related Publications

G E Kirsch, and R A Nichols, and S Nakajima
December 1984, The Tokai journal of experimental and clinical medicine,
G E Kirsch, and R A Nichols, and S Nakajima
January 1989, Biochimica et biophysica acta,
G E Kirsch, and R A Nichols, and S Nakajima
February 1985, The Journal of physiology,
G E Kirsch, and R A Nichols, and S Nakajima
January 1977, The Japanese journal of physiology,
G E Kirsch, and R A Nichols, and S Nakajima
September 1965, The Journal of physiology,
G E Kirsch, and R A Nichols, and S Nakajima
December 1967, Science (New York, N.Y.),
G E Kirsch, and R A Nichols, and S Nakajima
September 1962, The Journal of general physiology,
G E Kirsch, and R A Nichols, and S Nakajima
October 1979, The Journal of physiology,
G E Kirsch, and R A Nichols, and S Nakajima
August 1995, Journal of muscle research and cell motility,
G E Kirsch, and R A Nichols, and S Nakajima
May 1969, The Journal of physiology,
Copied contents to your clipboard!