Involvement of the amygdala in memory storage: interaction with other brain systems. 1996

J L McGaugh, and L Cahill, and B Roozendaal
Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697-3800, USA. jlmcgaug@uci.edu

There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intraamygdala infusions of drugs that activate beta-adrenergic and glucocorticoid receptors. Additionally, infusion of beta-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. beta-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positronemission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage.

UI MeSH Term Description Entries
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D008960 Models, Psychological Theoretical representations that simulate psychological processes and/or social processes. These include the use of mathematical equations, computers, and other electronic equipment. Model, Mental,Model, Psychological,Models, Mental,Models, Psychologic,Psychological Models,Mental Model,Mental Models,Model, Psychologic,Psychologic Model,Psychologic Models,Psychological Model
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004644 Emotions Those affective states which can be experienced and have arousing and motivational properties. Feelings,Regret,Emotion,Feeling,Regrets
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid

Related Publications

J L McGaugh, and L Cahill, and B Roozendaal
November 2002, Neurobiology of learning and memory,
J L McGaugh, and L Cahill, and B Roozendaal
May 1989, Brain research,
J L McGaugh, and L Cahill, and B Roozendaal
May 1999, European journal of pharmacology,
J L McGaugh, and L Cahill, and B Roozendaal
January 1987, International journal of neurology,
J L McGaugh, and L Cahill, and B Roozendaal
January 1989, Annual review of neuroscience,
J L McGaugh, and L Cahill, and B Roozendaal
July 1993, The European journal of neuroscience,
J L McGaugh, and L Cahill, and B Roozendaal
September 1992, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Copied contents to your clipboard!