Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. 1996

W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
Department of Pathology, New England Deaconess Hospital, Boston, MA 02215, USA.

Recent data implicates a role for the CD40-CD40 ligand (CD40L) pathway in graft rejection. One potential mechanism is direct costimulation of T cells through CD40L. Alternatively, the ability of CD40 stimulation to induce CD80 (B7-1) and CD86 (B7-2) expression on antigen-presenting cells (APCs) has led to the hypothesis that the role of CD40-CD40L interactions in transplant rejection might be indirect, i.e., to promote the costimulatory capacity of APCs. Here, we have used a murine vascularized cardiac allograft model to test this hypothesis. Treatment of the recipients with donor splenocytes and a single dose of anti-CD40L mAb induces long-term graft survival (> 100 days) in all animals. This is associated with marked inhibition of intragraft Th1 cytokine [interferon gamma and interleukin (IL) 2] and IL-12 expression with reciprocal up-regulation of Th2 cytokines (IL-4 and IL-10). In untreated allograft recipients, CD86 is strongly expressed on endothelial cells and infiltrating mononuclear cells of the graft within 24 hr. In contrast, CD80 expression is not seen until 72 hr after engraftment. Anti-CD40L mAb has no detectable effect on CD86 up-regulation, but almost completely abolishes induction of CD80. However, animals treated with anti-CD80 mAb or with a mutated form of CTLA4Ig (which does not bind to CD86) rejected their cardiac allografts, indicating that blockade of CD80 alone does not mediate the graft-prolonging effects of anti-CD40L mAb. These data support the notion that the role of CD40-CD40L in transplant rejection is not solely to promote CD80 or CD86 expression, but rather that this pathway can directly and independently costimulate T cells. These data also suggest that long-term graft survival can be achieved without blockade of either T cell receptor-mediated signals or CD28-CD86 engagement.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
May 2004, Transplantation proceedings,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
January 1995, Research in immunology,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
January 2002, Experimental eye research,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
June 1998, Transplantation,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
March 2004, Kidney international,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
January 1994, European journal of immunology,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
November 2017, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
May 2003, American journal of kidney diseases : the official journal of the National Kidney Foundation,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
December 1997, Transplantation,
W W Hancock, and M H Sayegh, and X G Zheng, and R Peach, and P S Linsley, and L A Turka
March 2003, Transplantation,
Copied contents to your clipboard!