Mechanisms of inhibitory action of kainic acid on prolactin secretion in male rats. 1996

L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
Department of Physiology, Faculty of Medicine, University of Córdoba, Spain.

Activation of excitatory N-methyl-D-aspartate and kainate receptors evokes multiple and diverse neuroendocrine changes. We have previously shown that kainic acid (KA), an agonist of kainate receptors, inhibits prolactin (PRL) secretion in male rats when given systemically. In the present studies we have characterized this inhibitory action. KA inhibited in vivo PRL secretion in neonatal, prepubertal and adult male rats. This inhibition was independent of gonadal secretion and was evident in male rats whether intact, orchidectomized, or orchidectomized and treated with testosterone. In addition, KA inhibited PRL secretion in male rats rendered hyperprolactinaemic by neonatal administration of oestradiol benzoate. The decrease in serum PRL levels after KA administration was accompanied by an increase in pituitary concentrations of dopamine, and the KA effect on PRL disappeared in males pretreated with domperidone, an antagonist of dopaminergic receptors. These findings strongly suggest that an increase in dopamine release was involved in the effects of KA. Also, KA inhibited in vitro PRL secretion by adenohypophysial dispersed cells and this effect was blocked by 6,7-dinitroquinoxaline, a kainate receptor antagonist, which indicates that the pituitary is also a possible site of action of KA. Nw-nitro-L-arginine-methyl ester, a blocker of nitric oxide synthase, reduced the effects of KA in vivo and slightly stimulated PRL release in vitro. We conclude that the inhibitory action of KA is independent of the age of the animal, the gonadal status and the prevailing PRL levels. The action of KA is probably mediated by an increase in dopamine secretion and by a direct effect at the pituitary level. Finally, the effect of KA on PRL secretion is partially dependent on endogenous nitric oxide.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D004294 Domperidone A specific blocker of dopamine receptors. It speeds gastrointestinal peristalsis, causes prolactin release, and is used as antiemetic and tool in the study of dopaminergic mechanisms. Apo-Domperidone,Domidon,Domperidon,Domperidon AL,Domperidon Hexal,Domperidon Stada,Domperidon-TEVA,Domperidona Gamir,Domperidone Maleate,Domperidone Maleate (1:1),Domperidone Monohydrochloride,Gastrocure,Motilium,Nauzelin,Novo-Domperidone,Nu-Domperidone,PMS-Domperidone,Péridys,R-33,812,R-33812,Ratio-Domperidone,Apo Domperidone,Domperidon TEVA,Gamir, Domperidona,Hexal, Domperidon,Maleate, Domperidone,Monohydrochloride, Domperidone,Novo Domperidone,Nu Domperidone,PMS Domperidone,R33,812,R33812,Ratio Domperidone,Stada, Domperidon
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual

Related Publications

L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
October 1996, European journal of endocrinology,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
January 1989, Life sciences,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
May 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
August 1983, Cephalalgia : an international journal of headache,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
October 1987, Japanese journal of pharmacology,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
January 1978, Communications in psychopharmacology,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
January 1989, Journal of pineal research,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
October 1995, The Journal of physiology,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
December 1981, Masui. The Japanese journal of anesthesiology,
L Pinilla, and D Gonzalez, and M Tena-Sempere, and R Aguilar, and E Aguilar
January 1988, Polish journal of pharmacology and pharmacy,
Copied contents to your clipboard!