Role of metabolism in the activation of dehydroepiandrosterone as a peroxisome proliferator. 1996

D J Waxman
Department of Biology, Boston University, Massachusetts 02215, USA.

The adrenal steroid dehydroepiandrosterone (DHEA) stimulates a dramatic increase in both the size and the number of peroxisomes present in liver when given at pharmacological doses to rodents. Structurally diverse chemicals including many fatty acids, hypolipidemic drugs and other foreign chemicals, can also induce such a peroxisome proliferative response. This response is associated with a dramatic induction of perosisomal fatty acid beta-oxidation enzymes and microsomal cytochrome P450 4A fatty acid hydroxylases and, long-term, can lead to induction of hepatocellular carcinoma. This review examines the underlying mechanisms by which DHEA induces peroxisome proliferation and evaluates the possible role of peroxisome proliferator-activated receptor (PPAR) in this process. Like DHEA, the 17 beta-reduced metabolite 5-androstene-3 beta. 17 beta-diol (ADIOL) is an active peroxisome proliferator when administered in vivo, whereas androgenic and estrogenic metabolites of DHEA are inactive. In primary rat hepatocytes, however, DHEA and ADIOI are inactive as inducers of P450 4A and peroxisomal enzymes unless first metabolized by steroid sulfotransferase to the 3 beta-sulfates, DHEA-S and ADIOL-S. Investigations as to whether DHEA utilizes the same induction mechanism employed by classic, foreign chemical peroxisome proliferators, namely, activation of the intracellular receptor molecule PPAR, have shown that DHEA-S and ADIOL-S are ineffective with respect to PPAR activation in transient transfection/trans-activation assays. This inactivity of DHEA-S in vitro suggests a requirement for specific cellular transport or for further metabolism of the steroid which is only met in liver cells. Alternatively, the action of DHEA-S may require accessory proteins or other nuclear factors that modulate the activity of PPAR, such as retinoid X receptor (RXR), hepatocyte nuclear factor-4 (HNF-4) or chick ovalbumin upstream promoter transcription factor (COUP-TF). Investigations using Ca(2+)-channel blockers such as nicardipine suggest that there are important mechanistic similarities between the foreign chemical- and DHEA-S-stimulated induction responses, and support the hypothesis that these two classes of peroxisome proliferators both activate Ca(2+)-dependent signaling pathways. Further studies are required to ascertain whether this potential of DHEA and its sulfated metabolites to serve as physiological modulators of fatty acid metabolism and peroxisome enzyme expression contributes to the striking anti-carcinogenic and other useful chemoprotective properties that DHEA is known to possess.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer
D000734 Androstenediols Unsaturated androstane derivatives which are substituted with two hydroxy groups in any position in the ring system.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019314 Dehydroepiandrosterone Sulfate The circulating form of a major C19 steroid produced primarily by the ADRENAL CORTEX. DHEA sulfate serves as a precursor for TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. DHEA Sulfate,DHA Sulfate,Dehydroisoandrosterone Sulfate,Prasterone Sulfate,Sulfate, DHA,Sulfate, DHEA,Sulfate, Dehydroepiandrosterone,Sulfate, Dehydroisoandrosterone,Sulfate, Prasterone

Related Publications

D J Waxman
September 1994, Archives of biochemistry and biophysics,
D J Waxman
April 1991, Biochimica et biophysica acta,
D J Waxman
August 2007, Current opinion in lipidology,
D J Waxman
December 2023, Basic & clinical pharmacology & toxicology,
Copied contents to your clipboard!