Insulin signaling and its regulation of system A amino acid uptake in cultured rat vascular smooth muscle cells. 1996

T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
Third Department of Medicine, Shiga University of Medical Science, Otsu, Japan.

Hyperinsulinemia has been recognized as an independent risk factor for atherosclerosis. However, its exact mechanisms are still unclear. In our previous work, we showed that 10 nmol/L insulin stimulated neither mitogen-activated protein kinase (MAP kinase) activity nor [3H]thymidine incorporation but did stimulated S6 kinase through the specific insulin receptors in cultured rat vascular smooth muscle cells (VSMCs). In this study, we observed that > or = 1 nmol/L insulin stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and activated IRS-1-dependent phosphatidylinositol 3'-kinase (PI 3'-kinase) and p70 S6 kinase (p70S6K) but not MAP kinase (extracellular signal-regulated kinase 2) and p90 S6 kinase (p90RSK). However, 10 nmol/L insulin-like growth factor I stimulated all these pathways. Finally, 10 nmol/L insulin stimulated alpha-amino-isobutyric acid (AIB) uptake, and wortmannin (100 nmol/L) completely inhibited insulin-stimulated AIB uptake, whereas rapamycin (20 nmol/L) had no such effect. Furthermore, cycloheximide (10 micrograms/mL) completely inhibited insulin-stimulated AIB uptake, but actinomycin D (5 micrograms/mL) failed to inhibit this. Thus, we reached the following conclusions: (1) Insulin (1 nmol/L) induced phosphorylation of IRS-1 and activated the PI 3'-kinase and p70S6K pathways in VSMCs, even though 10 nmol/L insulin did not significantly stimulate MAP kinase or p90RSK. (2) Stimulation of AIB uptake by insulin was regulated at the translational level via wortmannin-sensitive pathways but not p70S6K pathways.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010750 Phosphoproteins Phosphoprotein
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000621 Aminoisobutyric Acids A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid. Acids, Aminoisobutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases

Related Publications

T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
January 2009, Journal of vascular research,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
September 1993, Journal of cellular physiology,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
February 1995, Atherosclerosis,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
January 2001, Journal of cardiovascular pharmacology,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
August 2020, Biochemical and biophysical research communications,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
March 1977, The American journal of physiology,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
May 1985, The American journal of physiology,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
May 1986, The American journal of physiology,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
August 1994, The American journal of physiology,
T Obata, and A Kashiwagi, and H Maegawa, and Y Nishio, and S Ugi, and H Hidaka, and R Kikkawa
September 1993, The Journal of clinical investigation,
Copied contents to your clipboard!