Electrophoretic mobility of biological cells in asymmetric electrolyte solutions. 1996

J P Hsu, and S H Lin, and S Tseng
Department of Chemical Engineering, National Taiwan University, Taipei, Republic of China.

The electrophoretic mobility of a particle covered by a membrane in an a:b electrolyte solution is modeled theoretically. The membrane, which simulates the surface of a biological cell, is ion-penetrable, and carries homogeneously distributed negative fixed charges. An approximate expression for the electrophoretic mobility is derived. Based on the results of numerical simulation, we conclude the following: (1) The absolute Donnan potential increases with the concentration of the fixed charges C0, but decreases with the ionic strength I. (2) The greater the valence of cation alpha, the lower the absolute potential distribution. (3) The greater the C0, the greater the absolute mobility of a particle, magnitude of mu, and the greater the friction coefficient of the membrane phase gamma, the smaller the magnitude of mu. (4) A large I or a large a leads to a small magnitude of mu. (5) The greater the ratio (permittivity of solution/permittivity of membrane phase), the smaller the magnitude of mu. (6) For a large gamma, magnitude of mu decreases with the thickness of membrane d under the condition of constant amount of fixed charges. However, if gamma is sufficiently small, the variation of magnitude of mu as a function of d exhibits a maximum. The classic result of Smoluchowski for the electrophoretic mobility of a rigid particle can be recovered as a limiting case of the present model.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002468 Cell Physiological Phenomena Cellular processes, properties, and characteristics. Cell Physiological Processes,Cell Physiology,Cell Physiological Phenomenon,Cell Physiological Process,Physiology, Cell,Phenomena, Cell Physiological,Phenomenon, Cell Physiological,Physiological Process, Cell,Physiological Processes, Cell,Process, Cell Physiological,Processes, Cell Physiological
D004573 Electrolytes Substances that dissociate into two or more ions, to some extent, in water. Solutions of electrolytes thus conduct an electric current and can be decomposed by it (ELECTROLYSIS). (Grant & Hackh's Chemical Dictionary, 5th ed) Electrolyte
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J P Hsu, and S H Lin, and S Tseng
March 1999, Journal of colloid and interface science,
J P Hsu, and S H Lin, and S Tseng
April 2009, Langmuir : the ACS journal of surfaces and colloids,
J P Hsu, and S H Lin, and S Tseng
October 2015, Electrophoresis,
J P Hsu, and S H Lin, and S Tseng
April 2003, Journal of colloid and interface science,
J P Hsu, and S H Lin, and S Tseng
February 1991, Biophysical chemistry,
J P Hsu, and S H Lin, and S Tseng
December 1995, Physical review letters,
J P Hsu, and S H Lin, and S Tseng
June 2003, Journal of pharmaceutical and biomedical analysis,
J P Hsu, and S H Lin, and S Tseng
March 1967, Nagoya medical journal,
J P Hsu, and S H Lin, and S Tseng
December 2010, Journal of colloid and interface science,
Copied contents to your clipboard!