Lipoprotein-induced prostacyclin production in endothelial cells and effects of lipoprotein modification. 1996

D E Myers, and W N Huang, and R G Larkins
Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia.

Although lipoprotein modification has been implicated in atherogenesis, the effect of modified forms of lipoproteins on vascular cell function has not been fully resolved. We have investigated lipoprotein-induced prostaglandin production by macrovascular endothelial cells. This study delineates early responses of endothelial cells after exposure to native and modified forms of the lipoproteins. Modification of lipoproteins by oxidation or glycation significantly affected the capacity of lipoproteins to induce prostacyclin (PGI2) production by bovine aortic endothelial cells (BAEC). Modified low-density lipoprotein (LDL) increased PGI2 production in the short term (up to 24 h), but oxidized LDL caused an inhibition of PGI2-producing capacity in longer term incubations (48-72 h). Glycated (Glc) high-density lipoprotein 3 (HDL3) caused higher production of PGI2 in the short term (4-24 h) but reached similar levels as HDL3 over time. Glycation of high-density lipoprotein 2 had no effect on the PGI2-producing capacity of the lipoprotein. Thus modification of the lipoproteins affects their potential to induce PGI2 production in endothelial cells, and this may have an influence on vascular function in disease states such as diabetes and atherosclerosis. Although the changes appear to contradict data from long-term in vivo studies, these results from in vitro studies may reflect the situation in very early lesion development. GlcLDL, while causing an increase in endothelial cell PGI2 production, may be involved in compromised endothelial function, since GlcLDL is prone to oxidation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D E Myers, and W N Huang, and R G Larkins
January 1989, Biochemical and biophysical research communications,
D E Myers, and W N Huang, and R G Larkins
May 1980, The Journal of clinical investigation,
D E Myers, and W N Huang, and R G Larkins
January 1988, Arteriosclerosis (Dallas, Tex.),
D E Myers, and W N Huang, and R G Larkins
March 1985, Science (New York, N.Y.),
D E Myers, and W N Huang, and R G Larkins
July 1999, Prostaglandins, leukotrienes, and essential fatty acids,
D E Myers, and W N Huang, and R G Larkins
January 1979, Haemostasis,
D E Myers, and W N Huang, and R G Larkins
October 1989, The Biochemical journal,
D E Myers, and W N Huang, and R G Larkins
December 2012, Cardiovascular & hematological disorders drug targets,
D E Myers, and W N Huang, and R G Larkins
January 1997, Prostaglandins, leukotrienes, and essential fatty acids,
D E Myers, and W N Huang, and R G Larkins
January 1983, Advances in prostaglandin, thromboxane, and leukotriene research,
Copied contents to your clipboard!