Caffeine- and carbachol-induced Cl- and cation currents in single opossum esophageal circular muscle cells. 1996

Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
Center for Swallowing and Motility Disorders, Beth Israel Hospital, Harvard Medical School, Boston 02215, USA.

Cl- and cation currents may play important roles in esophageal smooth muscle membrane potential changes and contraction. We studied Ca2+ release-activated cell-shortening and membrane currents in single cells freshly dispersed from the circular muscle of the opossum esophagus using the standard patch-clamp whole cell recording method. Caffeine (10-20 microM) and carbachol (10-100 microM) shortened the single smooth muscle cells by releasing intracellular Ca2+. At a holding potential of 0 mV, spontaneous transient outward currents STOCs, representing spontaneous Ca(2+)-activated K+ currents) were recorded. Caffeine, carbachol, or ionomycin evoked large outward currents (up to 1,650 pA) and subsequently abolished STOCs. At a holding potential of -50 mV in K(+)-containing solutions, an outward current in response to the agonists was observed; in some cells, the outward current followed an inward current. In K(+)-free solutions, the agonists induced only an inward current whose reversal potential was shifted by alteration of the anion gradient but not by that of the cation. With a low-Cl- pipette solution (Cl- substituted by glucuronate or glutamate), the inward currents were dependent mainly on the external cation gradient. This cation channel was permeable to Ba2+. Inclusion of 10 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid in the pipette solution abolished all these currents. These data suggest that in the opossum esophageal circular muscle 1) Ca2+ released from the intracellular stores by caffeine and carbachol is sufficient to induce single smooth muscle cell contraction and 2) the caffeine-, carbachol-, and ionomycin-induced membrane currents consist of Ca(2+)-activated K+, Cl-, and cation conductances.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009893 Opossums New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth. Didelphidae,Opossum
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion

Related Publications

Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
June 1994, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
June 1996, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
December 1999, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
August 1999, The Japanese journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
July 1992, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
November 1991, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
January 1988, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
April 1987, Gastroenterology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
October 1989, The American journal of physiology,
Q Wang, and H I Akbarali, and N Hatakeyama, and R K Goyal
July 2001, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!