In vivo phosphorylation of actin in Physarum polycephalum. Study of the substrate specificity of the actin-fragmin kinase. 1996

V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
Flanders Interuniversity Institute of Biotechnology, Department of Biochemistry, Universiteit Gent, Belgium.

Actin-fragmin is a heterodimeric protein complex from Physarum polycephalum microplasmodia that is phosphorylated in vitro at residues Thr203 and Thr202 of the actin subunit by the endogenous actin-fragmin kinase. Following phosphorylation, the F-actin capping activity of the complex becomes Ca(2+)-dependent, suggesting a fundamental regulatory role in controlling F-actin growth [Gettemans, J., De Ville, Y., Waelkens E. and Vandekerckhove, J. (1995) J. Biol. Chem. 270, 2644-2651]. In this study we analysed actin phosphorylation in vivo. We demonstrate that the actin-fragmin complex constitutes the only substrate of the actin-fragmin kinase in plasmodia. Monomeric actin is not phosphorylated. Immunoprecipitation of actin-fragmin reveals that approximately 40% of the actin subunit of the complex is phosphorylated in vivo. However, using purified substrate and kinase, the complex can be quantitatively phosphorylated as judged by two-dimensional gel electrophoresis. Through comparative phosphopeptide fingerprinting, we show that the phosphorylation sites in vivo are identical to those identified in vitro. We additionally characterized a complex of actin and the NH2-terminal half of fragmin (residues 1-168) that is also phosphorylated by the same kinase. In contrast to actin-fragmin, phosphorylation of the complex between actin and residues 1-168 of fragmin is independent of Ca2+ because the second Ca(2+)-dependent regulatory actin-binding domain is missing. By artificially varying the actin-fragmin concentration or the actin-fragmin kinase activity present in microplasmodia cytosolic extracts, we attempted to detect alternative protein substrates for the actin-fragmin kinase. The fact that none could be identified suggests that the control and properties of actin-fragmin phosphorylation observed in vitro may stand as a model for F-actin growth control in Physarum cells.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
October 1999, European journal of biochemistry,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
June 1988, Journal of muscle research and cell motility,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
March 1985, European journal of cell biology,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
May 1969, Journal of biochemistry,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
August 1983, The Journal of biological chemistry,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
February 2006, Cell motility and the cytoskeleton,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
January 1983, Methods in enzymology,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
November 1982, Biochemistry,
V De Corte, and J Gettemans, and E Waelkens, and J Vandekerckhove
January 1983, European journal of cell biology,
Copied contents to your clipboard!