Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. 1996

M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
Section of Pediatric Nutrition, University of Colorado Health Sciences Center, Denver 80262, USA.

In the present study, the time course of change in sucrose-induced insulin resistance, triglyceride (TG) concentration, and liver fatty acid composition was examined. Male rats (n = 8-10/group per time point) was fed a high-starch (ST) diet for 2 wk and were then equicalorically fed ST or a high-sucrose (SU) diet for 1, 2, 5, or 8 wk. Body weight and percent body fat were similar between ST and SU diets at all time points. Glucose infusion rate (GIR) was significantly (P < 0.05) lower in the SU diet (9.2 +/- 0.9, 7.4 +/- 0.5, 6.2 +/- 1.0, and 6.0 +/- 0.9 mg.kg-1.min-1) vs. the ST diet (15.1 +/- 1.7, 15.7 +/- 0.7, 14.7 +/- 1.9, and 14.2 +/- 0.9 mg.kg-1.min-1) at 1, 2, 5, and 8 wk, respectively. Reduced suppression of glucose appearance accounted for 85, 50, 45, and 40% of the reduction in GIR at these same time points. Muscle glycogen synthesis was reduced (P < 0.05 vs. ST diet) in the SU diet at 2, 5, and 8 wk. Fasting plasma TG concentration was inversely related (r = -0.79, P < 0.001) to muscle glycogen synthesis, and liver TG concentration was positively related (r = 0.59, P < 0.01) to glucose appearance. Liver fatty acid composition was similar between diet groups. In summary, the SU diet produced insulin resistance in liver before muscle. TG concentration appears to be related to sucrose-induced insulin resistance in liver and muscle.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof

Related Publications

M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
January 1981, Annals of nutrition & metabolism,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
December 1991, The Journal of nutrition,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
January 1973, Scandinavian journal of gastroenterology,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
December 1986, The American journal of physiology,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
January 2018, PloS one,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
June 2006, American journal of physiology. Heart and circulatory physiology,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
December 1976, Canadian journal of microbiology,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
January 1970, Biologia,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
January 1973, Acta medica Scandinavica,
M J Pagliassotti, and P A Prach, and T A Koppenhafer, and D A Pan
January 2002, Annals of nutrition & metabolism,
Copied contents to your clipboard!