Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency. 1977

N Iwatsuki, and O H Petersen

1. Two glass micro-electrodes were inserted into neighbouring cells from rat or mouse pancreatic segments, superfused in vitro. The tip of a third glass micro-electrode, filled with 2 M-AChCl, was placed just outside the acinus under investigation. Membrane potential and resistance, and changes in these parameters in response to short pulses of ACh stimulation, were recorded.2. The resting current-voltage relationship, obtained by injecting 100 msec depolarizing or hyperpolarizing current pulses through one of the intracellular micro-electrodes and recording the membrane potential with the other intracellular electrode, was linear within the range -5 to -60 mV.3. Injecting depolarizing or hyperpolarizing current (d.c.) through one of the intracellular micro-electrodes, the membrane potential (as measured with the other intracellular micro-electrode) could be set at various levels. The effect of ACh at different membrane potentials was investigated. When the acinar cell membrane was hyperpolarized, the amplitude of ACh-evoked depolarization was increased, while ACh-evoked depolarization was reduced when the membrane potential was reduced by depolarizing current, and finally changed into a hyperpolarization at very low membrane potentials. In each acinus investigated (rat and mouse), there was a linear relationship between amplitude of ACh-evoked potential change (DeltaV) (+ value or - value according to polarity) and resting membrane potential. During superfusion with control solution, the value of the membrane potential at which ACh did not evoke a potential change (E(ACh)) was about -15 mV in the mouse and about -20 mV in the rat. During superfusion with a chloride-free sulphate-containing solution (steady state), a linear relationship between DeltaV and resting membrane potential was again found but E(ACh) (mouse) was about +10 mV.4. A continuous rough estimate of E(ACh) was obtained by injecting repetitively depolarizing current pulses (100 msec) through one intracellular micro-electrode; in this way, the effect of ACh measured by the other intracellular electrode could be assessed simultaneously at the spontaneous resting level, and at a depolarized level. The direction of change in E(ACh) following acute changes in the superfusion fluid ion composition was assessed. Replacing extracellular chloride by sulphate caused an immediate change in E(ACh) in the positive direction. Re-admission of chloride, after a long period of chloride ion deprivation, caused an immediate sharp change in E(ACh) in the negative direction. Replacing extracellular sodium by Tris caused an immediate transient negative change in E(ACh). In contrast, taking away extracellular calcium changed E(ACh) in a positive direction. Augmenting extracellular potassium concentration to 40 mM caused a change in E(ACh) in the positive direction.5. At a membrane potential (V) equal to E(ACh) the sum of ionic currents evoked by the action of ACh is zero. Using the Goldman treatment, it appears that ACh increases membrane Na, K and Cl permeability. The approximate relative ion permeabilities of the pathways opened up by ACh are: P(Na)/P(K) = 2.5 and P(Cl)/P(K) = 5. At V = E(ACh), the approximate relative sizes of the ACh-evoked currents are: I(Na)/I(K) = 2.6 and I(Cl)/I(K) = 1.6 ACh, therefore, causes influx of Na and Cl and a small efflux of K.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

N Iwatsuki, and O H Petersen
August 1980, Pflugers Archiv : European journal of physiology,
N Iwatsuki, and O H Petersen
April 1974, The Journal of physiology,
N Iwatsuki, and O H Petersen
December 1975, Proceedings of the Royal Society of London. Series B, Biological sciences,
N Iwatsuki, and O H Petersen
July 1973, Nature: New biology,
N Iwatsuki, and O H Petersen
September 1991, Cell calcium,
Copied contents to your clipboard!