Quantitative analysis of substance P-immunoreactive boutons on physiologically characterized dorsal horn neurons in the cat lumbar spinal cord. 1996

W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
Department of Pharmacology, McGill University, Montréal, Québec, Canada.

A quantitative analysis of substance P (SP)-immunoreactive (IR) terminals contacting physiologically characterized dorsal horn neurons was performed. Three types of neuron were studied: nociceptive specific (NS) from lamina I (n = 3), wide dynamic range (WDR) from laminae II-IV (n = 3), and nonnociceptive (NN) from lamina IV (n = 3). The nociceptive response of focus was a slow, prolonged depolarization to noxious stimuli, because this response was previously shown to be blocked by selective neurokinin-1 (NK-1) receptor antagonists. Ultrastructural immunocytochemistry was used to quantify the relative number of SP-IR boutons apposed to the intracellularly labeled cell per unit of length (density). Densities of the total population (SP immunoreactive+nonimmunoreactive) of apposed boutons were similar in all three regions (cell body, proximal and distal dendrites) for the three functional types of neuron. NS neurons received a significantly higher density of appositions from SP-IR boutons than NN cells in all three regions. However, compared to WDR cells, NS cells possessed a significantly higher density of appositions from SP-IR boutons only in the cell body and proximal dendrites. WDR cells had a higher density of appositions from SP-IR boutons than NN cells, but only in the proximal and distal dendrites. On average, 33.5% of the SP-IR boutons apposed to the cells displayed a synaptic contact. Finally, 30-45% of the SP-IR boutons apposed to the cells colocalized calcitonin gene-related protein (CGRP) immunoreactivity, indicating their primary sensory origin. The data indicate a direct correlation between the amount of SP-IR input and the nociceptive nature of the cells and suggest that SP acts on NK-1 receptors at a short distance from its release site.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
October 1997, Science in China. Series C, Life sciences,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
November 1990, Brain research,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
January 1988, Peptides,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
January 1983, Somatosensory research,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
January 1987, Neuroscience letters,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
April 1979, Brain research,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
June 1988, Brain research,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
February 1968, The Journal of comparative neurology,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
January 1989, Neuroscience,
W Ma, and A Ribeiro-Da-Silva, and Y De Koninck, and V Radhakrishnan, and J L Henry, and A C Cuello
May 1982, Neuroscience,
Copied contents to your clipboard!