Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture. 1996

M Matsuzawa, and P Liesi, and W Knoll
Frontier Research Program, RIKEN, Saitama, Japan. silver@postman.riken.go.jp

We describe here a modification procedure for chemically fabricating neuron adhesive substrates to study the substratum-guided neurite outgrowth in culture. These substrates were fabricated by chemically attaching a synthetic peptide derived from a neurite-out-growth-promoting domain of the B2 chain of laminin. The attachment was carried out by coupling the peptide to an amine-derived glass surface using a heterobifunctional crosslinker. Hippocampal neurons were dissociated from embryonic rats and placed on the substrate at low-density in a chemically defined medium to examine the direct effect of the modified surface on their outgrowth. We observed that the neurons developed a morphology typical to that of hippocampal neurons having multiple short and single long processes within 24 h in culture. The chemical modification procedure was then combined with a UV-photo-masking technique to fabricate patterns of peptide surface on glass substrates. By culturing the hippocampal neurons on substates having alternate stripes of peptide surface and non-adhesive surface, we demonstrated substratum-controlled changes in the neuronal morphology. The modification procedure presented here can be easily achieved in the standard culture facility and should be useful in fabricating an in vitro tool for studying substratum-guided neurite outgrowth.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D005898 Glass Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013388 Succinimides A subclass of IMIDES with the general structure of pyrrolidinedione. They are prepared by the distillation of ammonium succinate. They are sweet-tasting compounds that are used as chemical intermediates and plant growth stimulants. Butanimides,Pyrrolidinediones

Related Publications

M Matsuzawa, and P Liesi, and W Knoll
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
M Matsuzawa, and P Liesi, and W Knoll
September 1983, Developmental biology,
M Matsuzawa, and P Liesi, and W Knoll
January 2011, Progress in brain research,
M Matsuzawa, and P Liesi, and W Knoll
August 1981, Developmental biology,
M Matsuzawa, and P Liesi, and W Knoll
January 1989, Developmental neuroscience,
M Matsuzawa, and P Liesi, and W Knoll
December 1990, Development (Cambridge, England),
M Matsuzawa, and P Liesi, and W Knoll
January 1985, Journal of neuroscience research,
M Matsuzawa, and P Liesi, and W Knoll
January 2007, Methods in molecular biology (Clifton, N.J.),
M Matsuzawa, and P Liesi, and W Knoll
June 1951, The Anatomical record,
Copied contents to your clipboard!